Skip to main content
Log in

Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to develop a novel one-step ICSI approach to select sperm with better chromatin maturity than the conventional method.

Methods

This was a pilot diagnostic study, which prospectively recruited men during a 6-month period in a University-affiliated infertility centre. Forty consecutive semen samples were provided for analysis. The positive rheotaxis extended drop (PRED) was set up creating a pressure and viscosity gradient. Each semen sample was divided into four aliquots: one aliquot for density gradient centrifugation (DGC), two aliquots for PRED (fresh semen (PRED-FS) and processed semen (PRED-DGC)), and one aliquot as the control (FS). In PRED, a mean of 200 spermatozoa were collected consecutively without selection from the outlet reservoir. The aniline blue assay was used to assess chromatin immaturity.

Results

The mean channel length, measured from inlet to outlet, was 32.55 ± 0.86 mm, with a mean width of 1.04 ± 0.21 mm. In 82.5% of cases (33/40), at least 50 spermatozoa were captured between 15 and 30 min. Improved chromatin maturity after the DGC preparation and the PRED approach was observed in all samples. This was reflected by a mean reduction from 28.65 ± 8.97% uncondensed chromatin in the native ejaculates to 17.29 ± 7.72% in DGC and 0.89 ± 1.31% in the PRED approach (P < 0.01).

Conclusions

The PRED method may improve the current ICSI technique by providing it with its own sperm selection process. ICSI would probably become an even more complete technique comprising selection, capture and injection of the male gamete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fitzpatrick JL, Lupold S. Sexual selection and the evolution of sperm quality. Mol Hum Reprod. 2014;20(12):1180–9. https://doi.org/10.1093/molehr/gau067.

    Article  PubMed  Google Scholar 

  2. Kantsler V, Dunkel J, Blayney M, Goldstein RE. Rheotaxis facilitates upstream navigation of mammalian sperm cells. elife. 2014;3:e02403. https://doi.org/10.7554/eLife.02403.

    PubMed  PubMed Central  Google Scholar 

  3. Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke ID, Barratt CL. Sperm numbers and distribution within the human fallopian tube around ovulation. Human reproduction (Oxford, England). 1993;8(12):2019–26.

    Article  CAS  Google Scholar 

  4. Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077–84. https://doi.org/10.1016/j.fertnstert.2008.01.015.

    Article  PubMed  Google Scholar 

  5. Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9. https://doi.org/10.1016/j.fertnstert.2012.12.025.

    Article  PubMed  Google Scholar 

  6. Marchetti F, Wyrobek AJ. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA repair. 2008;7(4):572–81. https://doi.org/10.1016/j.dnarep.2007.12.011.

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi Y, Riel JM, Ward MA. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. J Androl. 2012;33(2):229–38. https://doi.org/10.2164/jandrol.111.013532.

    Article  CAS  PubMed  Google Scholar 

  8. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36. https://doi.org/10.1016/j.fertnstert.2009.10.046.

    Article  CAS  PubMed  Google Scholar 

  9. Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod. 2013;19(8):475–85. https://doi.org/10.1093/molehr/gat025.

    Article  CAS  PubMed  Google Scholar 

  10. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17(13):1922–37. https://doi.org/10.1093/hmg/ddn090.

    Article  CAS  PubMed  Google Scholar 

  11. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Human reproduction (Oxford, England). 2012;27(10):2908–17. https://doi.org/10.1093/humrep/des261.

    Article  CAS  Google Scholar 

  12. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Human reproduction (Oxford, England). 2008;23(12):2663–8. https://doi.org/10.1093/humrep/den321.

    Article  CAS  Google Scholar 

  13. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Current biology : CB. 2013;23(6):443–52. https://doi.org/10.1016/j.cub.2013.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amaral A, Lourenco B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction (Cambridge, England). 2013;146(5):R163–74. https://doi.org/10.1530/rep-13-0178.

    Article  CAS  Google Scholar 

  15. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.

    Article  CAS  PubMed  Google Scholar 

  16. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod BioMed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  17. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50. https://doi.org/10.1039/c3lc51254a.

    Article  CAS  PubMed  Google Scholar 

  18. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Advanced healthcare materials. 2014;3(10):1671–9. https://doi.org/10.1002/adhm.201400058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Yin T, Yang J. A novel microfluidic device for selecting human sperm to increase the proportion of morphologically normal, motile sperm with uncompromised DNA integrity. Anal Methods. 2015;7(14):5981–8.

    Article  CAS  Google Scholar 

  20. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21.e1. https://doi.org/10.1016/j.fertnstert.2015.10.023.

    Article  CAS  PubMed  Google Scholar 

  21. WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO Press; 2010.

    Google Scholar 

  22. Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Human reproduction (Oxford, England). 2011;26(7):1650–8. https://doi.org/10.1093/humrep/der129.

    Article  CAS  Google Scholar 

  23. Wong A, Chuan SS, Patton WC, Jacobson JD, Corselli J, Chan PJ. Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril. 2008;90(5):1999–2002. https://doi.org/10.1016/j.fertnstert.2007.09.026.

    Article  PubMed  Google Scholar 

  24. Park YS, Kim MK, Lee SH, Cho JW, Song IO, Seo JT. Efficacy of testicular sperm chromatin condensation assay using aniline blue-eosin staining in the IVF-ET cycle. Clinical and experimental reproductive medicine. 2011;38(3):142–7. https://doi.org/10.5653/cerm.2011.38.3.142.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fujii Y, Motoyama H, Hiraguchi K, Kobashi C, Kunitomi K. A simple method for recovering the motile spermatozoa from extremely low quality sperm samples. Human reproduction (Oxford, England). 1997;12(6):1218–21.

    Article  CAS  Google Scholar 

  26. Hinting A, Lunardhi H. Better sperm selection for intracytoplasmic sperm injection with the side migration technique. Andrologia. 2001;33(6):343–6.

    Article  CAS  PubMed  Google Scholar 

  27. Woolley DM. Motility of spermatozoa at surfaces. Reproduction (Cambridge, England). 2003;126(2):259–70.

    Article  CAS  Google Scholar 

  28. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci U S A. 2012;109(21):8007–10. https://doi.org/10.1073/pnas.1202934109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seo D, Agca Y, Feng ZC, Critser JK. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluid. 2007;3(5):561–70. https://doi.org/10.1007/s10404-006-0142-3.

    Article  Google Scholar 

  30. Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221–9. https://doi.org/10.1016/j.tibtech.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  31. Tung CK, Ardon F, Fiore AG, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip. 2014;14(7):1348–56. https://doi.org/10.1039/c3lc51297e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Sherry TM, Elsayed M, Abdelhafez HK, Abdelgawad M. Characterization of rheotaxis of bull sperm using microfluidics. Integrative biology : quantitative biosciences from nano to macro. 2014;6(12):1111–21. https://doi.org/10.1039/c4ib00196f.

    Article  Google Scholar 

  33. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small (Weinheim an der Bergstrasse, Germany). 2013;9(20):3374–84. https://doi.org/10.1002/smll.201300020.

    Article  CAS  Google Scholar 

  34. Avendano C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57. https://doi.org/10.1016/j.fertnstert.2009.02.050.

    Article  PubMed  Google Scholar 

  35. Maettner R, Sterzik K, Isachenko V, Strehler E, Rahimi G, Alabart JL, et al. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity. Andrologia. 2014;46(5):547–55. https://doi.org/10.1111/and.12114.

    Article  CAS  PubMed  Google Scholar 

  36. Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Society of Reproduction and Fertility supplement. 2007;65:515–25.

    PubMed  Google Scholar 

  37. Jayaraman V, Upadhya D, Narayan PK, Adiga SK. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J Assist Reprod Genet. 2012;29(6):557–63. https://doi.org/10.1007/s10815-012-9742-x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87. https://doi.org/10.1016/j.biotechadv.2016.01.007.

    Article  PubMed  Google Scholar 

  39. Aitken RJ, Finnie JM, Muscio L, Whiting S, Connaughton HS, Kuczera L, et al. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Human reproduction (Oxford, England). 2014;29(10):2136–47. https://doi.org/10.1093/humrep/deu204.

    Article  CAS  Google Scholar 

  40. Muratori M, Tarozzi N, Cambi M, Boni L, Iorio AL, Passaro C, et al. Variation of DNA fragmentation levels during density gradient sperm selection for assisted reproduction techniques: a possible new male predictive parameter of pregnancy? Medicine. 2016;95(20):e3624. https://doi.org/10.1097/md.0000000000003624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013;99(2):400–7. https://doi.org/10.1016/j.fertnstert.2012.10.022.

    Article  PubMed  Google Scholar 

  42. Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui I, Sallem A, et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril. 2016;105(1):58–64. https://doi.org/10.1016/j.fertnstert.2015.09.041.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Henrique P. Fazao and the entire IVF team for their enthusiasm and support.

Authors’ roles

H.M. and M.S.C. played a role in the conception, design and acquisition of the data, drafted the manuscript and reviewed the final version. B.C.T., P.C.S, G.J.A.W and E.P.M participated in data interpretation, critical revision and final approval of the manuscript. P.A.A.M, M.S., J.M.S.J and E.C.B were involved in data analysis, drafting of the manuscript and its final approval.

Funding

This study did not receive any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello S. Cocuzza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Video 1

(WMV 35596 kb)

Supplementary Video 2

(WMV 11713 kb)

Supplementary Video 3

(WMV 2697 kb)

Supplementary Video 4

(WMV 13072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Martin, H., Cocuzza, M.S., Tiseo, B.C. et al. Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J Assist Reprod Genet 34, 1699–1708 (2017). https://doi.org/10.1007/s10815-017-1024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1024-1

Keywords

Navigation