Skip to main content
Log in

The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 29 April 2017

Abstract

Purpose

This study seeks to evaluate the association between follicular fluid (FF) coenzyme Q10 (CoQ10) levels, embryo morphokinetics, and pregnancy rate.

Methods

Sixty infertile patients who underwent intracytoplasmic sperm injection (ICSI) cycles were included in the study. For each patient, CoQ10 level of the follicular fluid was measured by high-performance liquid chromatography system. After the ICSI of each oocyte, the relationship between the level of CoQ10 content of each follicular fluid, the subsequent embryo quality, and embryo morphokinetics was investigated. The relationship between the level of CoQ10 content of each follicle and optimal time-lapse parameters for the embryos of these follicles including t5, s2, and cc2 was also analyzed. The embryos were further classified into four categories, namely, grades A, B, C, and D, according to morphokinetic parameters using t5–t2 and t5–t3 (cc3). Each follicular fluid analysis was performed for a single oocyte of a single embryo which was transferred to the patients. Additionally, follicular fluid CoQ10 levels and pregnancy rates were evaluated.

Results

Follicular fluid CoQ10 levels were significantly higher in grades A and B than grades C and D embryos (p < 0.05). The concentration of CoQ10 levels was significantly higher in the pregnant group (p < 0.05). There was no significant correlation between optimal t5 and s2 morphokinetic parameters and CoQ10 levels. However, CoQ10 levels were significantly higher in follicular fluid of embryos which had optimal cc2 (p < 0.05).

Conclusion

High follicular fluid CoQ10 level is associated with optimal embryo morphokinetic parameters and higher pregnancy rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bentov Y, Casper RF. The aging oocyte—can mitochondrial function be improved? Fertil Steril. 2013;99(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  2. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  3. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and development potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  4. Wilding M, Dale B, Marino M, Matteo L, Alviggi C, Pisaturo ML, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 2001; 16: 909–917.

  5. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 2015: 887–895.

  6. May Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007;77:51–83.

    Article  CAS  PubMed  Google Scholar 

  7. Gendelman M, Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118,1–12.

    Article  Google Scholar 

  8. Stojkovic M, Westesn K, Zakhartchenko V, Stojkovic P, Boxhammer K, Wolf E. Coenzyme Q10 in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos. Biol Reprod. 1999;61:541–7.

    Article  CAS  PubMed  Google Scholar 

  9. Garrido-Maraver J, Cordero MD, Oropesa-Avila M, Vega AF, La Mata M, Pavon AD, et al. Coenzyme Q10 therapy. Mol Syndromol. 2014;5:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mancini A, De Marinis L, Oradei A, Littaru GP, Balercia G. An update of coenzyme Q10 implications in male infertility: biochemical and therapeutic aspects. Biofactors. 2005;25:165–74.

    Article  CAS  PubMed  Google Scholar 

  11. Safarinejad MR. The effect of coenzyme Q10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia: an open-label prospective study. Int Urol Nephrol. 2012;44:689–700.

    Article  CAS  PubMed  Google Scholar 

  12. Bentov Y, Hannam T, Jurisicova A, Esfandiari N, Casper RF. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clin Med Insights Reprod Health. 2014;8:31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gat I, Mejia SB, Balakier H, Librach CL, Claessens A, Ryan EAJ. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. 2016; 32(7):534–537.

  14. Revelli A, Piane LD, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher R, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.

    Article  PubMed  Google Scholar 

  16. Basile N, Nogales MC, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetic analysis. Fertil Steril. 2014;101:699–704.

    Article  PubMed  Google Scholar 

  17. Aparicio B, Cruz M, Meseguer M. Is morphokinetic analysis the answer? Reprod Biomed Online. 2013;27:654–63.

    Article  CAS  PubMed  Google Scholar 

  18. Sundvall L, Ingerslev HJ, Breth Knudsen U, Kirkegaard K. Inter- and intra-observer variability of time-lapse annotations. Hum Reprod. 2013;28:3215–21.

    Article  PubMed  Google Scholar 

  19. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86:27.

    Article  PubMed  Google Scholar 

  21. Quinzii CM, Tadesse S, Naini A, Hirano M. Effects of inhibiting CoQ10 biosynthesis with 4-nitrobenzoate in human fibroblasts. PLoS One. 2012;7:e30606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luce K, Weil AC, Osiewacz HD. Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol. 2010;694:108–25.

    Article  CAS  PubMed  Google Scholar 

  23. Niklowitz P, Onur S, Fischer A, Laudes M, Palussen M, Menke T, et al. Coenzyme Q10 serum concentration and redox status in European adults: influence of age, sex and lipoprotein concentration. J Clin Biochem Nutr. 2016;58:240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dumollard R, Ward Z, Caroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development. 2007;134:455–65.

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi T, Neri QV, Katagiri Y, Rosenwaks Z, Palermo GD. Effect of treating induced mitochondrial damage on embryonic development and epigenesist. Biol Reprod. 2005;72:584–92.

    Article  CAS  PubMed  Google Scholar 

  26. Thouas GA, Trounson AO, Jones GM. Developmental effects of sublethal mitochondrial injury in mouse oocytes. Biol Reprod. 2006;74:969–77.

    Article  CAS  PubMed  Google Scholar 

  27. Turi A, Giannubilo SR, Bruge F, Principi F, Battistoni S, Santoni F, et al. Coenzyme Q10 content in follicular fluid and its relationship with oocyte fertilization and embryo grading. Arch Gynecol Obstet. 2012;285:1173–6.

    Article  CAS  PubMed  Google Scholar 

  28. Refaeey AE, Selem A, Badawy A. Combined coenzyme Q10 and clomiphene citrate for ovulation induction in clomiphene-citrate-resistant polycystic ovary syndrome. Reprod Biomed Online. 2014;29:119–24.

    Article  PubMed  Google Scholar 

  29. Miles MV, Horn PS, Tang PH, Morrison JA, Miles L, DeGrauw T, et al. Age related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults. Clin Chim Acta. 2004;347:139–44.

    Article  CAS  PubMed  Google Scholar 

  30. Noia G, Littaru GP, De Santis M, Oradei A, Mactromarino C, Trivellini C, et al. Coenzyme Q10 in pregnancy. Fetal Diagn Ther. 1996;11:264–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Gode.

Additional information

The original version of this article was revised: Mustafa Agah Tekindağ was corrected to Mustafa Agah Tekindal.

An erratum to this article is available at http://dx.doi.org/10.1007/s10815-017-0932-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akarsu, S., Gode, F., Isik, A.Z. et al. The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques. J Assist Reprod Genet 34, 599–605 (2017). https://doi.org/10.1007/s10815-017-0882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0882-x

Keywords

Navigation