Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?


There has been much debate regarding the optimal oxygen tension in clinical embryo culture. The majority of the literature to date has compared 5% oxygen to atmospheric levels (20–21%). While the majority of modern IVF labs have accepted the superiority of 5% oxygen tension, a new debate has emerged regarding whether a further reduction after day 3 of development represents the most physiologic system. This new avenue of research is based on the premise that oxygen tension is in fact lower in the uterus than in the oviduct and that the embryo crosses the uterotubal junction sometime on day 3. While data are currently limited, recent experience with ultra-low oxygen (2%) after day 3 of development suggests that the optimal oxygen tension in embryo culture may depend on the stage of development. This review article will consider the current state of the literature and discuss ongoing efforts at studying ultra-low oxygen tension in extended culture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;29(5280):132–3.

    Article  Google Scholar 

  2. 2.

    Bishop DW. Metabolic conditions within the oviduct of the rabbit. Int J Fertil Steril. 1957;2:11–22.

    Google Scholar 

  3. 3.

    Mastroianni Jr L, Jones R. Oxygen tension within the rabbit fallopian tube. J Reprod Fertil. 1965;9:99–102.

    Article  PubMed  Google Scholar 

  4. 4.

    Whitten WK. The effect of oxygen on cleavage of mouse eggs. In: Abstracts of 2nd Annual Meeting, Society for the Study of Reproduction, Davis, California; 1969. p. 29.

  5. 5.

    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;(7):Art. No.:CD008950.

  6. 6.

    Barbieri M, Orlando G, Sciajino R, Serrao L, Fava L, Preti S. High or low oxygen tension—comparison of embryo culture in different incubators. Hum Reprod. 2012;27(Suppl 2). ii62–205. Abstract no. P-174.

  7. 7.

    De los Santos MJ, Gamiz P, Albert C, Galan A, Viloria T, Perers S, et al. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100:402–7.

    Article  PubMed  Google Scholar 

  8. 8.

    Nasri CO, Nobrega BN, Teixeira DM, Amorim J, Diniz LM, Barbosa MW, et al. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: a systematic review and meta-analysis. Fertil Steril. 2016;106(1):95–104.

    Article  Google Scholar 

  9. 9.

    Kissin DM, Kulkarni AD, Mneimneh A, Warner L, Boulet SL, Crawford S, et al. Embryo transfer practices and multiple births resulting from assisted reproductive technology: an opportunity for prevention. Fertil Steril. 2015;103(4):954–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. Reprod BioMed Online. 2002;4(2):160–9.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kaser DJ, Bogale B, Sarda V, Farland LV, Racowsky C. Randomized controlled trial of low (5%) vs. ultra-low (2%) oxygen tension for in vitro development of human embryos. Fertil Steril. 2016;106(3):e4.

    Article  Google Scholar 

  13. 13.

    Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, et al. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol. 2006;572:87–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Maas DH, Storey BT, Mastroianni Jr L. Oxygen tension in the oviduct of the rhesus monkey (Macaca mulatta). Fertil Steril. 1976;27:1312–7.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Harvey AJ. The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim Reprod Sci. 2007;98(1–2):113–28.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Khurana NK, Wales RG. Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro. Reprod Fertil Dev. 1989;1:99–106.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11:2703–12.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Van Soom A, Yuan YQ, Peelman LJ, de Matos DG, Dewulf J, Laevens H, et al. Prevalence of apoptosis in inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology. 2002;57:1453–65.

    Article  PubMed  Google Scholar 

  19. 19.

    Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15 Suppl 2:199–206.

    Article  PubMed  Google Scholar 

  20. 20.

    Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–97.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Rinaudo PF, Giritharan G, Talbi S, Dobson A, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86 Suppl 4:1252–65.

    CAS  PubMed  Google Scholar 

  22. 22.

    Li W, Goossens K, Van Poucke M, Foreir K, Braeckmans K, Van Soom A, et al. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod Fertil Dev. 2014;28(7):948–59.

    Article  Google Scholar 

  23. 23.

    Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130:899–905.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Christianson MS, Zhao Y, Shoham G, Granot I, Safran A, Khafagy A, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey. J Assist Reprod Genet. 2014;31:1029–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, et al. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30(8):1073–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, et al. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril. 2007;87(1):213–6.

    Article  PubMed  Google Scholar 

  28. 28.

    Peng ZF, Shi SL, Jin HX, Yao GD, Wang EY, Yang HY, et al. Impact of oxygen concentrations on fertilization, cleavage, implantation and pregnancy rates of in vitro generated human embryos. Int J Clin Exp Med. 2015;8:6179–85.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Croxatto HB, Ortiz ME, Diaz S, Hess R, Balmaceda J, Croxatto HD. Studies on the duration of egg transport by the human oviduct. II. Ovum location at various intervals following luteinizing hormone peak. Am J Obstet Gynecol. 1978;132:629–34.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Diaz S, Ortiz ME, Croxatto HB. Studies on the duration of ovum transport by the human oviduct. III. Time interval between the luteinizing hormone peak and recovery of ova by transcervical flushing of the uterus in normal women. Am J Obstet Gynecol. 1980;137(1):116–21.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab. 2011;22(10):412–20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1(1):63–72.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Guerin P, el Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Yang Y, Yanwen X, Ding C, Khoudja RY, Lin M, Awonuga AO, et al. Comparison of 2, 5, and 20% O2 on the development of post-thaw human embryos. J Assist Reprod Genet. 2016;33(7):919–27.

    Article  PubMed  Google Scholar 

  36. 36.

    Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod BioMed Online. 2004;9(4):409–17.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Scott J. Morin.

Additional information


A sequential embryo culture system that reduces oxygen tension from 5 to 2% on day 3 may (1) be more physiologic and (2) improve blastulation rates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morin, S.J. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?. J Assist Reprod Genet 34, 309–314 (2017). https://doi.org/10.1007/s10815-017-0880-z

Download citation


  • Embryo culture
  • In vitro fertilization
  • Oxygen tension
  • Extended culture
  • Blastocyst transfer