Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 4, pp 525–533 | Cite as

Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study

  • Ronit Machtinger
  • Rodosthenis S. Rodosthenous
  • Michal Adir
  • Abdallah Mansour
  • Catherine Racowsky
  • Andrea A. Baccarelli
  • Russ Hauser
Reproductive Physiology and Disease

Abstract

Purpose

The purpose of this study is to determine the profile of extracellular microRNAs (exmiRNAs) in follicular fluid (FF) and explore their association with fertilization potential and embryo quality.

Methods

We collected FF from single follicles containing mature oocytes from 40 women undergoing IVF and we screened for the expression of 754 exmiRNAs in FF using the TaqMan OpenArray® qPCR platform. To determine the association of exmiRNAs and IVF outcomes, we compared their expression levels in FF samples that differ by fertilization status (normally, abnormally, and failed to fertilize) and embryo quality (top vs. non-top).

Results

We detected 207 exmiRNAs, of which miR-30d-5p, miR-320b, miR-10b-3p, miR-1291, and miR-720 were most prevalent. We identified four exmiRNAs with significant fold change (FC) when FF that contained normally fertilized was compared to failed to fertilize oocytes [miR-202-5p (FC = 1.82, p = 0.01), miR-206 (FC = 2.09, p = 0.04), miR-16-1-3p (FC = 1.88, p = 0.05), and miR-1244 (FC = 2.72, p = 0.05)]. We also found four exmiRNAs to be significantly differentially expressed in FF that yielded top quality versus non-top quality embryos [(miR-766-3p (FC = 1.95, p = 0.01), miR-663b (FC = 0.18, p = 0.02), miR-132-3p (FC = 2.45, p = 0.05), and miR-16-5p (FC = 3.80, p = 0.05)]. In-silico analysis revealed that several of these exmiRNAs are involved in pathways implicated in reproductive system diseases, organismal abnormalities, and organ development.

Conclusions

Our findings suggest that exmiRNAs in the follicular fluid can lead to downstream events that will affect fertilization and day 3 embryo morphology. We encourage further observational and experimental studies to confirm our findings and to determine the role of exmiRNAs in human reproduction.

Keywords

Follicular fluid MicroRNAs Extracellular vesicles Exosomes Fertilization Reproduction 

Notes

Acknowledgements

We thank the patients that donated the follicular fluid and the IVF team contributing to this study.

Compliance with ethical standards

Funding

This study was funded by Grant Award no. RPGA1301 from the Environmental and Health Fund (EHF), Israel and by grants P30ES00002 and R21ES024236 from the National Institute of Environmental Health Sciences, USA.

Supplementary material

10815_2017_876_MOESM1_ESM.docx (147 kb)
Figure S1 (DOCX 146 kb)
10815_2017_876_MOESM2_ESM.xlsx (50 kb)
Table S1 (XLSX 49 kb)
10815_2017_876_MOESM3_ESM.xlsx (14 kb)
Table S2 (XLSX 13 kb)
10815_2017_876_MOESM4_ESM.xlsx (14 kb)
Table S3 (XLSX 13 kb)
10815_2017_876_MOESM5_ESM.xlsx (20 kb)
Table S4 (XLSX 20 kb)
10815_2017_876_MOESM6_ESM.xlsx (19 kb)
Table S5 (XLSX 18 kb)
10815_2017_876_MOESM7_ESM.xlsx (14 kb)
Table S6 (XLSX 14 kb)
10815_2017_876_MOESM8_ESM.xlsx (20 kb)
Table S7 (XLSX 20 kb)
10815_2017_876_MOESM9_ESM.xlsx (11 kb)
Table S8 (XLSX 11 kb)

References

  1. 1.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Eppig JJ, Chesnel F, Hirao Y, O’Brien MJ, Pendola FL, Watanabe S, et al. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.PubMedGoogle Scholar
  3. 3.
    Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43(4):543–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413. doi: 10.1139/y10-009.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Winterhager E, Kidder GM. Gap junction connexins in female reproductive organs: implications for women’s reproductive health. Hum Reprod Update. 2015. doi: 10.1093/humupd/dmv007.PubMedGoogle Scholar
  6. 6.
    Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80. doi: 10.1126/science.1071965.CrossRefPubMedGoogle Scholar
  7. 7.
    Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracellular Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066.CrossRefGoogle Scholar
  8. 8.
    Da Silveira JC, Sessions DR, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ. MiRNAs within the ovarian follicle: Identification of cell-secreted vesicles as miRNA carriers. Biol Reprod. 2011;85(1).Google Scholar
  9. 9.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. doi: 10.1083/jcb.201211138.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod. 2009;15(7):399–409. doi: 10.1093/molehr/gap031.CrossRefPubMedGoogle Scholar
  11. 11.
    Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93. doi: 10.1093/humupd/dmv055.
  12. 12.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73. doi: 10.1038/nature03315.CrossRefPubMedGoogle Scholar
  14. 14.
    Li SC, Tang P, Lin WC. Intronic microRNA: discovery and biological implications. DNA Cell Biol. 2007;26(4):195–207. doi: 10.1089/dna.2006.0558.CrossRefPubMedGoogle Scholar
  15. 15.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi: 10.1038/nrg2843.PubMedGoogle Scholar
  16. 16.
    Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008;22(10):2336–52. doi: 10.1210/me.2008-0142.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saetrom P, Snove Jr O, Rossi JJ. Epigenetics and microRNAs. Pediatr Res. 2007;61(5 Pt 2):17R–23R. doi: 10.1203/pdr.0b013e318045760e.CrossRefPubMedGoogle Scholar
  18. 18.
    Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102(6):1751–U590. doi: 10.1016/j.fertnstert.2014.08.005.CrossRefPubMedGoogle Scholar
  19. 19.
    da Silveira JC, de Andrade GM, Nogueira MF, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015;22(12):1474–83. doi: 10.1177/1933719115574344.CrossRefPubMedGoogle Scholar
  20. 20.
    Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep. 2016;6:25486. doi: 10.1038/srep25486.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    da Silveira JC, Winger QA, Bouma GJ, Carnevale EM. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-beta signalling during follicle development in the mare. Reprod Fertil Dev. 2015;27(6):897–905. doi: 10.1071/RD14452.CrossRefPubMedGoogle Scholar
  22. 22.
    Sohel Md. Mahmodul H, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: Implications for bovine oocyte developmental competence. PloS one. 2013;8(11).Google Scholar
  23. 23.
    da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain mirnas and proteins: A possible new form of cell communication within the ovarian follicle. Biology of Reproduction. 2012;86(3).Google Scholar
  24. 24.
    Kim YJ, Ku SY, Kim YY, Liu HC, Chi SW, Kim SH, et al. MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod. 2013;28(11):3050–61. doi: 10.1093/humrep/det338.CrossRefPubMedGoogle Scholar
  25. 25.
    Machtinger R, Bormann CL, Ginsburg ES, Racowsky C. Is the presence of a non-cleaved embryo on day 3 associated with poorer quality of the remaining embryos in the cohort? J Assist Reprod Genet. 2015. doi: 10.1007/s10815-015-0455-9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83. doi: 10.1093/humrep/der037.CrossRefGoogle Scholar
  27. 27.
    Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 2015;10(8):e0136133. doi: 10.1371/journal.pone.0136133.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Racowsky C, Combelles CM, Nureddin A, Pan Y, Finn A, Miles L, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6(3):323–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod Biomed Online. 2013;26(3):210–21. doi: 10.1016/j.rbmo.2012.10.021.CrossRefPubMedGoogle Scholar
  30. 30.
    Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64. doi: 10.1186/gb-2009-10-6-r64.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.CrossRefPubMedGoogle Scholar
  32. 32.
    Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4. doi: 10.7554/eLife.05005.
  33. 33.
    Assou S, Al-edani T, Haouzi D, Philippe N, Lecellier CH, Piquemal D, et al. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Hum Reprod. 2013;28(11):3038–49. doi: 10.1093/humrep/det321.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu FJ, Shen XF. Comparative analysis of human reproductive proteomes identifies candidate proteins of sperm maturation. Mol Biol Rep. 2012;39(12):10257–63. doi: 10.1007/s11033-012-1902-7.CrossRefGoogle Scholar
  35. 35.
    Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of MicroRNAs in human follicular fluid: characterization of MicroRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–79.CrossRefPubMedGoogle Scholar
  36. 36.
    Moreno JM, Nunez MJ, Quinonero A, Martinez S, de la Orden M, Simon C, et al. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril. 2015;104(4):1037–46. doi: 10.1016/j.fertnstert.2015.07.001. e1.CrossRefPubMedGoogle Scholar
  37. 37.
    Velthut-Meikas A, Simm J, Tuuri T, Tapanainen JS, Metsis M, Salumets A. Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Mol Endocrinol. 2013;27(7):1128–41. doi: 10.1210/me.2013-1058.CrossRefPubMedGoogle Scholar
  38. 38.
    Kishimoto T. Cell-cycle control during meiotic maturation. Curr Opin Cell Biol. 2003;15(6):654–63.CrossRefPubMedGoogle Scholar
  39. 39.
    Stitzel ML, Seydoux G. Regulation of the oocyte-to-zygote transition. Science. 2007;316(5823):407–8. doi: 10.1126/science.1138236.CrossRefPubMedGoogle Scholar
  40. 40.
    Schier AF. The maternal-zygotic transition: death and birth of RNAs. Science. 2007;316(5823):406–7. doi: 10.1126/science.1140693.CrossRefPubMedGoogle Scholar
  41. 41.
    Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312(5770):75–9. doi: 10.1126/science.1122689.CrossRefPubMedGoogle Scholar
  42. 42.
    Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86(1):25–88. doi: 10.1152/physrev.00023.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res. 2016;363(1):169–83. doi: 10.1007/s00441-015-2291-8.CrossRefPubMedGoogle Scholar
  44. 44.
    Schatten H, Sun QY. New insights into the role of centrosomes in mammalian fertilization and implications for ART. Reproduction. 2011;142(6):793–801. doi: 10.1530/REP-11-0261.CrossRefPubMedGoogle Scholar
  45. 45.
    Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–23. doi: 10.1038/ncb2329.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev : MMBR. 2011;75(1):50–83. doi: 10.1128/MMBR.00031-10.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Odile ML, Heloise C, Julia M, Robert B, Patrick C. MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos. Dev Biol. 2016. doi: 10.1016/j.ydbio.2016.11.018.Google Scholar
  48. 48.
    Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015;5:8689. doi: 10.1038/srep08689.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015;98(9):6552–63. doi: 10.3168/jds.2015-9510.CrossRefPubMedGoogle Scholar
  50. 50.
    Armstrong DA, Green BB, Seigne JD, Schned AR, Marsit CJ. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol Cancer. 2015;14:194. doi: 10.1186/s12943-015-0466-2.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, et al. KRAS-dependent sorting of miRNA to exosomes. eLife. 2015;4:e07197. doi: 10.7554/eLife.07197.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Guzman N, Agarwal K, Asthagiri D, Yu L, Saji M, Ringel MD, et al. Breast cancer-specific miR signature unique to extracellular vesicles includes “microRNA-like” tRNA fragments. Mol Cancer Res : MCR. 2015;13(5):891–901. doi: 10.1158/1541-7786.MCR-14-0533.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Joshi GK, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R, et al. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes. ACS Nano. 2015;9(11):11075–89. doi: 10.1021/acsnano.5b04527.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Melman YF, Shah R, Danielson K, Xiao J, Simonson B, Barth A, et al. Circulating MicroRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation. 2015;131(25):2202–16. doi: 10.1161/CIRCULATIONAHA.114.013220.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ronit Machtinger
    • 1
  • Rodosthenis S. Rodosthenous
    • 2
  • Michal Adir
    • 1
  • Abdallah Mansour
    • 1
  • Catherine Racowsky
    • 3
  • Andrea A. Baccarelli
    • 4
  • Russ Hauser
    • 2
  1. 1.Department of Obstetrics and Gynecology, Sheba Medical CenterRamat-Gan and Sackler School of Medicine Tel- Aviv UniversityTel AvivIsrael
  2. 2.Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonUSA
  3. 3.Brigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Human Epigenetics LaboratoryColumbia University, Mailman School of Public HealthNew YorkUSA

Personalised recommendations