Skip to main content
Log in

Optimal embryo transfer strategy in poor response may include freeze-all

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

In this retrospective cohort study, we investigated the best embryo transfer strategy in ICSI cycles with ≤4 oocytes collected at oocyte retrieval.

Methods

Women who underwent antagonist co-treatment COS for ICSI treatment between January 2010 and December 2015 at a private ART clinic (N = 2263). Eight hundred seventy-nine women (group 1) had ≤4 oocytes collected at oocyte retrieval, of whom 645 (group A) had cleavage stage embryo transfer (ET), and 234 (group B) had blastocyst ET. One thousand three hundred eighty-four women (group 2) had 10–15 oocytes collected at oocyte retrieval, of whom 676 (group C) had cleavage stage ET, and 708 women (group D) had blastocyst ET. Blastocyst vitrification was performed using the Cryotop method and FET using artificial cycles.

Results

In group 1, the cancellation rate was significantly lower in group A (25.2 vs 38 %). The pregnancy rate (PR), clinical PR, implantation rate (IR), and live birth rate (LBR) per ET and per oocyte retrieval were all lower in group A. The clinical PR, IR, and LBR per ET of vitrified-warmed blastocyst ET were significantly the highest. In group 2, the cycle cancellation rate was significantly lower in group C (3.5 vs 13.4 %). The PR, clinical PR, and IR per ET and per oocyte retrieval were all lower in group C. The LBR per ET was significantly lower, but the LBR per oocyte retrieval was not significantly lower in group C. Again, the PR, clinical PR, and IR per ET of vitrified-warmed blastocyst ET were significantly the highest.

Conclusions

Day 5 ET strategy has been reserved for normal or high responders. The improved pregnancy outcomes from blastocyst culture and cryopreservation may challenge ART to extend this benefit to poor responders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia JE, Jones GS, Acosta AA, Wright G. HMG/hCG follicular maturation for oocytes aspiration: phase II, 1981. Fertil Steril. 1983;39:174–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ferraretti AP, la Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitrofertilization: the Bologna criteria. Hum Reprod. 2011;26:1616–24.

    Article  CAS  PubMed  Google Scholar 

  3. Cobo A, de Los Santos MJ, Castello D, Gamiz P, Campos P, Remobi J. Outcomes of vitrified early cleavage-stage and blastocyst-stage embryos in a cryopreservation program: evaluation of 3150 warming cycles. Fertil Steril. 2012;98:1138–45.

    Article  PubMed  Google Scholar 

  4. Gardner DK, Vella P, Lane M, et al. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril. 1998;69:84–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gardner D. Blastocyst culture: toward single embryo transfer. Hum Fertil. 2000;3:229–37.

    Article  Google Scholar 

  6. Bungum M, Bungum L, Humaidan P, Andersen CY. Day 3 versus day 5 embryo transfer: a prospective randomized study. Reprod Biomed Online. 2003;7:98–104.

    Article  CAS  PubMed  Google Scholar 

  7. Frattarelli JL, Leondires MP, McKeeby JL, et al. Blastocyst transfer decreases multiple pregnancy rates in in vitro fertilization cycles: a randomized controlled trial. Fertil Steril. 2003;79:228–30.

    Article  PubMed  Google Scholar 

  8. Racowsky C, Combelles CMH, Nureddin A, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6:323–31.

    Article  PubMed  Google Scholar 

  9. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.

    Google Scholar 

  10. Ata B, Kaplan B, Danzer H, Glassner M, Opsahl M, Tan SL, et al. Array CGH analysis shows that aneuploidy is not related with the number of embryos generated. Reprod Biomed Online. 2012;24:614–20.

    Article  CAS  PubMed  Google Scholar 

  11. Papanikolaou E, Kolibianakis E, Tournaye H, Venetis C, Fratemi H, Tarlatzis B, et al. Live birth rates after transfer of equal number of balstocysts or cleavage-stage embryos in IVF. A systematic review and meta-analysis. Hum Reprod. 2008;23:91–9.

    Article  PubMed  Google Scholar 

  12. Van der Auwera I, Debrock S, Spiessens C, Afschrift H, Bakelants E, Meuleman C, et al. A prospective randomized study, day 2 versus day 5 embryo transfer. Hum Reprod. 2002;17:1507–12.

    Article  PubMed  Google Scholar 

  13. Papanikolaou E, D’haeseleer E, Verheyen G, Van de Velde H, Camus M, Van Steirteghem A, et al. Live birth rate is significantly higher after blastocyst transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;20:3198–203.

    Article  PubMed  Google Scholar 

  14. Emiliani S, Delbaere A, Vannin AS, Biramane J, Verdoodt M, Englert Y, et al. Similar delivery rates in a selected group of patients, for day 2 and day 5 embryos both cultured in sequential medium: a randomized study. Hum Reprod. 2003;18:2145–50.

    Article  PubMed  Google Scholar 

  15. Kolb BA, Paulson RJ. The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation. Am J Obstet Gynecol. 1997;176:1262–7.

    Article  CAS  PubMed  Google Scholar 

  16. Check JH, Choe JK, Katsoff D, Summers-Chase D, Wilson C. Controlled ovarian hyperstimulation adversely affects implantation after in vitro fertilization-embryo transfer. J Assist Reprod Genet. 1999;16:416–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikas G, Develioglu OH, Toner JP, Jones Jr HW. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod. 1999;14:787–92.

    Article  CAS  PubMed  Google Scholar 

  18. Kolibianakis E, Bourgain C, Albano C, Osmanagaoglu K, Smitz J, Van Steirteghem A, et al. Effect of ovarian stimulation with recombinant follicle-stimulating hormone, gonadotropin releasing hormone antagonists, and human chorionic gonadotropin on endometrial maturation on the day of oocyte pick-up. Fertil Steril. 2002;78:1025–9.

    Article  PubMed  Google Scholar 

  19. Papanikolaou EG, Bourgain C, Kolibianakis E, Tournaye H, Devroey P. Steroid receptor expression in late follicular phase endometrium in GnRH antagonist IVF cycles is already altered, indicating initiation of early luteal phase transformation in the absence of secretory changes. Hum Reprod. 2005;20:1541–7.

    Article  CAS  PubMed  Google Scholar 

  20. Horcajadas JA, Diaz-Gimeno P, Pellicer A, Simon C. Uterine receptivity and the ramifications of ovarian stimulation on endometrial function. Semin Reprod Med. 2007;25:454–60.

    Article  PubMed  Google Scholar 

  21. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89:20–6.

    Article  PubMed  Google Scholar 

  22. Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, et al. gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24:1436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011a;96:344-8

  24. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011b;96:516-8

  25. Polyzos NP, Devroey P. A systematic review of randomized trials for the treatment of poor ovarian responders: is there any light at the end of the tunnel? Fertil Steril. 2011;96:1058–61.

    Article  PubMed  Google Scholar 

  26. Demirol A, Gurgan T. Comparison of microdose flare-up and antagonist multiple-dose protocols for poor-responder patients: a randomized study. Fertil Steril. 2009;92:481–5.

    Article  PubMed  Google Scholar 

  27. Berkkanoglu M, Ozgur K. What is the optimum maximal gonadotropin dosage used in microdose flare-up cycles in poor responders? Fertil Steril. 2010;94:662–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kuang Y, Chen Q, Hong Q, Lyu Q, Ai A, Fu Y, et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reprod Biomed Online. 2014;29:684–91.

    Article  PubMed  Google Scholar 

  29. Ozcan Cenksoy P, Ficicioglu C, Kizilkale O, Suhha Bostanci M, Bakacak M, Yesiladali M, et al. The comparision of effect of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients. Gynecol Endocrinol. 2014;30:485–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ubaldi F, Vaiarelli A, D’Anna R, Rienzi L. Management of poor responders in IVF: is there anything new? Biomed Res Int. 2014;2014:352098.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Polyzos NP, Nwoye M, Corona R, Blockeel C, Stoop D, Haentjens P, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reprod BioMed Online. 2014;28:469–74.

    Article  PubMed  Google Scholar 

  32. Baker VL, Brown MB, Luke B, Smith GW, Ireland JJ. Gonadotropin dose is negatively correlated with live birth rate: analysis of more than 650,000 assisted reproductive technology cycles. Fertil Steril. 2015;104:1145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozgur K, Berkkanoglu M, Bulut H, Isikli A, Coetzee K. Higher clinical pregnancy rates from frozen-thawed blastocyst transfers compared to fresh blastocyst transfers: a retrospective matched-cohort study. J Assist Reprod Genet. 2015a;32:1483-90

  34. Ozgur K, Berkkanoglu M, Bulut H, Humaidan P, Coetzee K. Perinatal outcomes after fresh versus vitrified-warned blastocyst transfer: retrospective analysis. Fertil Steril 2015b;104:899-907

  35. Ng EH, Yeung WS, So WW, Ho PC. An analysis of ectopic pregnancies following in vitro fertilisation treatment in a 10-year period. J Obstet Gynaecol. 1998;18:359–64.

    Article  CAS  PubMed  Google Scholar 

  36. Olivennes F, Fanchin R, Ledee N, Righini C, Kadoch IJ, Frydman R. Perinatal outcome and developmental studies on children born after IVF. Hum Reprod Update. 2002;8:117–28.

    Article  CAS  PubMed  Google Scholar 

  37. Kallen B, Finnstrom O, Nygren KG, Otterblad Olausson P, Wennerholm UB. In vitro fertilisation in Sweden: obstetric characteristics, maternal morbidity and mortality. BJOG. 2005;112:1529–35.

    Article  PubMed  Google Scholar 

  38. Lin CM, Chen CW, Chen PT, Lu TH, Li CY. Risks and causes of mortality among low-birthweight infants in childhood and adolescence. Paediat Perinat Epidemiol. 2007;21:465–72.

    Article  Google Scholar 

  39. Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359:262–73.

    Article  CAS  PubMed  Google Scholar 

  40. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23:1644–53.

    Article  CAS  PubMed  Google Scholar 

  41. Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomaki K, Hazekamp J, Nygren KG, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24:2158–72.

    Article  PubMed  Google Scholar 

  42. Pelkonen S, Koivunen R, Gissler M, Nuojua-Huttunen S, Suikkari AM, Hyden-Granskog C, et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006. Hum Reprod. 2010;25:914–23.

    Article  CAS  PubMed  Google Scholar 

  43. Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010;94:1320–7.

    Article  PubMed  Google Scholar 

  44. Ishihara O, Kuwahara A, Saitoh H. Frozen-thawed blastocyst transfer reduces ectopic pregnancy risk: an analysis of single embryo transfer cycles in Japan. Fertil Steril. 2011;95:1966–9.

    Article  PubMed  Google Scholar 

  45. Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;118:863–71.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13.

    Article  CAS  PubMed  Google Scholar 

  47. Halliday JL, Ukoumunne OC, Baker HW, Breheny S, Jaques AM, Garrett C, et al. Increased risk of blastogenesis birth defects, arising in the first 4 weeks of pregnancy, after assisted reproductive technologies. Hum Reprod. 2010;25:59–65.

    Article  PubMed  Google Scholar 

  48. Kato O, Kawasaki N, Bodri D, Kuroda T, Kawachiya S, Kato K, et al. Neonatal outcome and birth defects in 6623 singletons born following minimal ovarian stimulation and vitrified versus fresh single embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2012;161:46–50.

    Article  PubMed  Google Scholar 

  49. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77.

    Article  PubMed  Google Scholar 

  50. Shapiro BS, Daneshmand ST, De Leon L, Garner FC, Aguirre M, Hudson C. Frozen-thawed embryo transfer is associated with a significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012;98:1490–4.

    Article  PubMed  Google Scholar 

  51. Imudia AN, Awonuga AO, Kaimal AJ, Wright DL, Styer AK, Toth TL. Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverse obstetric outcomes: a preliminary study. Fertil Steril. 2013;99:168–73.

    Article  PubMed  Google Scholar 

  52. Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M, et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99:450–5.

    Article  PubMed  Google Scholar 

  53. Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Söderström-Anttila V, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19:87–104.

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan EA, Zegers-Hochschild F, Mansour R, Ishihara O, de Mouzon J, Nygren KG, et al. International Committee for Monitoring Assisted Reproductive Technologies (ICMART) world report: assisted reproductive technology 2004. Hum Reprod. 2013;28:1375–90.

    Article  CAS  PubMed  Google Scholar 

  55. Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R, et al. Perinatal outcomes of children born after frozen thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28:2545–53.

    Article  PubMed  Google Scholar 

  56. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.

    Article  PubMed  Google Scholar 

  57. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20:808–21.

    Article  PubMed  Google Scholar 

  58. Fauser BC, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Enocrinol Metab. 2003;14:236–42.

    Article  CAS  Google Scholar 

  59. Humaidan P, Papanikolaou EG, Kyrou D, Alsbjerg B, Polyzos NP, Devroey P, et al. The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives. Reprod BioMed Online. 2012;24:134–41.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu L, Li Y, Xu A. Influence of controlled ovarian hyperstimulation on uterine peristalsis in infertile women. Hum Reprod. 2012;27:2684–9.

    Article  CAS  PubMed  Google Scholar 

  61. Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol Reprod. 2014;90:1–9.

    Article  Google Scholar 

  62. Werner MD, Leondires MP, Schoolcraft WB, Miller BT, Copperman AB, Robins ED, et al. Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low. Fertil Steril. 2014;102:1613–8.

    Article  PubMed  Google Scholar 

  63. Grifo J, Kofinas J, Schoolcraft WB. Conceptions. Fertil Steril. 2014;102:658–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Berkkanoglu.

Ethics declarations

Funding

This study received no financial support.

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All participants in this study signed an informed consent (institutional Ethics committee form included).

Study data

The study data was partly presented at the 71st Annual Meeting of the ASRM, Baltimore, Maryland, USA, 17 to 21 October 2015.

Additional information

Capsule In a retrospective cohort study, day 5 blastocyst transfers were found to provide superior pregnancy rates compared to cleavage stage embryo transfers with further increases in pregnancy achieved through the transfer of vitrified-warmed blastocysts in frozen embryo transfers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkkanoglu, M., Coetzee, K., Bulut, H. et al. Optimal embryo transfer strategy in poor response may include freeze-all. J Assist Reprod Genet 34, 79–87 (2017). https://doi.org/10.1007/s10815-016-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0825-y

Keywords

Navigation