Skip to main content

Advertisement

Log in

Immunogenetic contributions to recurrent pregnancy loss

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

While sporadic pregnancy loss is common, occurring in 15 % of pregnancies, recurrent pregnancy loss (RPL) impacts approximately 5 % of couples. Though multiple causes are known (including structural, hormonal, infectious, autoimmune, and thrombophilic causes), after evaluation, roughly half of all cases remain unexplained. The idiopathic RPL cases pose a challenging therapeutic dilemma in addition to incurring much physical and emotional morbidity. Immunogenetic causes have been postulated to contribute to these cases of RPL. Natural Killer cell, T cell expression pattern changes in the endometrium have both been shown in patients with RPL. Human leukocyte antigen (HLA) and cytokine allelic variations have also been studied as etiologies for RPL. Some of the results have been promising, however the studies are small and have not yet put forth outcomes that would change our current diagnosis and management of RPL. Larger database studies are needed with stricter control criteria before reasonable conclusions can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jivraj S et al. Obstetric and neonatal outcome in women with a history of recurrent miscarriage: a cohort study. Hum Reprod. 2001;16(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  2. Fritz MA, Speroff L. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2010.

    Google Scholar 

  3. Stephenson M, Kutteh W. Evaluation and management of recurrent early pregnancy loss. Clin Obstet Gynecol. 2007;50(1):132–45.

    Article  PubMed  Google Scholar 

  4. Stirrat GM. Recurrent miscarriage. II: clinical associations, causes, and management. Lancet. 1990;336(8717):728–33.

    Article  CAS  PubMed  Google Scholar 

  5. Berry CW et al. The Euro-Team Early Pregnancy (ETEP) protocol for recurrent miscarriage. Hum Reprod. 1995;10(6):1516–20.

    Article  CAS  PubMed  Google Scholar 

  6. Boklage CE. Survival probability of human conceptions from fertilization to term. Int J Fertil. 1990;35(2):75. 79–80, 81–94.

    CAS  PubMed  Google Scholar 

  7. Wilcox AJ et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94.

    Article  CAS  PubMed  Google Scholar 

  8. Branch DW, Gibson M, Silver RM. Clinical practice. Recurrent miscarriage. N Engl J Med. 2010;363(18):1740–7.

    Article  CAS  PubMed  Google Scholar 

  9. Practice Committee of American Society for Reproductive, M. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99(1):63.

    Article  Google Scholar 

  10. Rull K, Nagirnaja L, Laan M. Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front Genet. 2012;3:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. American College of, O. and Gynecologists. ACOG practice bulletin. Management of recurrent pregnancy loss. Number 24, February 2001. (Replaces Technical Bulletin Number 212, September 1995). American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet. 2002;78(2):179–90.

    Article  Google Scholar 

  12. Krieg S, Westphal L. Immune function and recurrent pregnancy loss. Semin Reprod Med. 2015;33(4):305–12.

    Article  CAS  PubMed  Google Scholar 

  13. Christiansen OB. Reproductive immunology. Mol Immunol. 2013;55(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  14. Miyakis S et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295–306.

    Article  CAS  PubMed  Google Scholar 

  15. Reid SM et al. Interventions for clinical and subclinical hypothyroidism pre-pregnancy and during pregnancy. Cochrane Database Syst Rev. 2013;5:CD007752.

    PubMed  Google Scholar 

  16. Petri M, Allbritton J. Fetal outcome of lupus pregnancy: a retrospective case–control study of the Hopkins Lupus Cohort. J Rheumatol. 1993;20(4):650–6.

    CAS  PubMed  Google Scholar 

  17. Hardy CJ et al. Pregnancy outcome and family size in systemic lupus erythematosus: a case–control study. Rheumatology (Oxford). 1999;38(6):559–63.

    Article  CAS  Google Scholar 

  18. Naganuma M et al. Conception and pregnancy outcome in women with inflammatory bowel disease: a multicentre study from Japan. J Crohns Colitis. 2011;5(4):317–23.

    Article  PubMed  Google Scholar 

  19. Stagnaro-Green A et al. Detection of at-risk pregnancy by means of highly sensitive assays for thyroid autoantibodies. JAMA. 1990;264(11):1422–5.

    Article  CAS  PubMed  Google Scholar 

  20. Imaizumi M et al. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology. 2001;142(2):823–9.

    CAS  PubMed  Google Scholar 

  21. Imaizumi M et al. Non-MHC driven exacerbation of experimental thyroiditis in the postpartum period. Autoimmunity. 2001;34(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  22. Iijima T et al. Effects of autoantibodies on the course of pregnancy and fetal growth. Obstet Gynecol. 1997;90(3):364–9.

    Article  CAS  PubMed  Google Scholar 

  23. Christiansen OB et al. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol Obstet Investig. 2008;66(4):257–67.

    Article  Google Scholar 

  24. Ticconi C et al. Antinuclear autoantibodies in women with recurrent pregnancy loss. Am J Reprod Immunol. 2010;64(6):384–92.

    Article  CAS  PubMed  Google Scholar 

  25. Meroni PL et al. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011;7(6):330–9.

    Article  CAS  PubMed  Google Scholar 

  26. Qureshi F et al. Anti-DNA antibodies cross-reacting with laminin inhibit trophoblast attachment and migration: implications for recurrent pregnancy loss in SLE patients. Am J Reprod Immunol. 2000;44(3):136–42.

    Article  CAS  PubMed  Google Scholar 

  27. Practice Committee of the American Society for Reproductive, M. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.

    Article  Google Scholar 

  28. Andersen AMN et al. Maternal age and fetal loss: population based register Linkage study. Br Med J. 2000;320(7251):1708–12.

    Article  Google Scholar 

  29. Kolte AM et al. A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage. Mol Hum Reprod. 2011;17(6):379–85.

    Article  CAS  PubMed  Google Scholar 

  30. Marquard K et al. Etiology of recurrent pregnancy loss in women over the age of 35 years. Fertil Steril. 2010;94(4):1473–7.

    Article  PubMed  Google Scholar 

  31. Kosova G et al. Evolutionary forward genomics reveals novel insights into the genes and pathways dysregulated in recurrent early pregnancy loss. Hum Reprod. 2015;30(3):519–29.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Daher S et al. Genetic polymorphisms and recurrent spontaneous abortions: an overview of current knowledge. Am J Reprod Immunol. 2012;67(4):341–7.

    Article  CAS  PubMed  Google Scholar 

  33. Nelen WL et al. Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil Steril. 2000;74(6):1196–9.

    Article  CAS  PubMed  Google Scholar 

  34. Haller-Kikkatalo K et al. Autoimmune activation toward embryo implantation is rare in immune-privileged human endometrium. Semin Reprod Med. 2014;32(5):376–84.

    Article  PubMed  Google Scholar 

  35. Park DW, Yang KM. Hormonal regulation of uterine chemokines and immune cells. Clin Exp Reprod Med. 2011;38(4):179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laird SM et al. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003;9(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  37. Lessey BA, Young SL. Homeostasis imbalance in the endometrium of women with implantation defects: the role of estrogen and progesterone. Semin Reprod Med. 2014;32(5):365–75.

    Article  CAS  PubMed  Google Scholar 

  38. Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J Endocrinol. 2011;210(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  39. Lockwood CJ et al. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost. 2007;33(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz-Alonso M, Blesa D, Simon C. The genomics of the human endometrium. Biochim Biophys Acta. 2012;1822(12):1931–42.

    Article  CAS  PubMed  Google Scholar 

  41. Beydoun H, Saftlas AF. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens. 2005;65(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  42. Bansal AS. Joining the immunological dots in recurrent miscarriage. Am J Reprod Immunol. 2010;64(5):307–15.

    CAS  PubMed  Google Scholar 

  43. Blaschitz A, Hutter H, Dohr G. HLA class I protein expression in the human placenta. Early Pregnancy. 2001;5(1):67–9.

    CAS  PubMed  Google Scholar 

  44. Teles A, Zenclussen AC. How cells of the immune system prepare the endometrium for implantation. Semin Reprod Med. 2014;32(5):358–64.

    Article  CAS  PubMed  Google Scholar 

  45. Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(3):429–38.

    Article  PubMed  Google Scholar 

  46. Park DW et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63(2):173–80.

    Article  PubMed  Google Scholar 

  47. Thum MY et al. An increase in the absolute count of CD56dimCD16 + CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod. 2004;19(10):2395–400.

    Article  CAS  PubMed  Google Scholar 

  48. Polgar K, Hill JA. Identification of the white blood cell populations responsible for Th1 immunity to trophoblast and the timing of the response in women with recurrent pregnancy loss. Gynecol Obstet Investig. 2002;53(1):59–64.

    Article  CAS  Google Scholar 

  49. Wilkens J et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35.

    Article  CAS  PubMed  Google Scholar 

  50. King A, Loke YW, Chaouat G. NK cells and reproduction. Immunol Today. 1997;18(2):64–6.

    Article  CAS  PubMed  Google Scholar 

  51. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hiby SE et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120(11):4102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faridi RM, Agrawal S. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum Reprod. 2011;26(2):491–7.

    Article  CAS  PubMed  Google Scholar 

  54. King K et al. Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage. Hum Reprod. 2010;25(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kodama T et al. Characteristic changes of large granular lymphocytes that strongly express CD56 in endometrium during the menstrual cycle and early pregnancy. Hum Reprod. 1998;13(4):1036–43.

    Article  CAS  PubMed  Google Scholar 

  56. Fukui K et al. Leukocyte function-associated antigen-1 expression on decidual natural killer cells in patients with early pregnancy loss. Mol Hum Reprod. 1999;5(11):1083–8.

    Article  CAS  PubMed  Google Scholar 

  57. Woidacki K et al. Mast cells rescue implantation defects caused by c-kit deficiency. Cell Death Dis. 2013;4:e462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Woidacki K, Jensen F, Zenclussen AC. Mast cells as novel mediators of reproductive processes. Front Immunol. 2013;4:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Eidukaite A, Tamosiunas V. Endometrial and peritoneal macrophages: expression of activation and adhesion molecules. Am J Reprod Immunol. 2004;52(2):113–7.

    Article  PubMed  Google Scholar 

  60. Tachi C, Tachi S. Macrophages and implantation. Ann N Y Acad Sci. 1986;476:158–82.

    Article  CAS  PubMed  Google Scholar 

  61. Miller L, Hunt JS. Sex steroid hormones and macrophage function. Life Sci. 1996;59(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  62. Houser BL et al. Two unique human decidual macrophage populations. J Immunol. 2011;186(4):2633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin YJ et al. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278–86.

    Article  CAS  PubMed  Google Scholar 

  64. Strzemienski PJ, Dyer RM, Kenney RM. Effect of estradiol and progesterone on antistaphylococcal activity of neutrophils from ovariectomized mares. Am J Vet Res. 1987;48(11):1638–41.

    CAS  PubMed  Google Scholar 

  65. Strzemienski PJ et al. Bactericidal activity of peripheral blood neutrophils during the oestrous cycle and early pregnancy in the mare. J Reprod Fertil. 1987;80(1):289–93.

    Article  CAS  PubMed  Google Scholar 

  66. Wiesenfeld HC et al. Association between elevated neutrophil defensin levels and endometritis. J Infect Dis. 2002;186(6):792–7.

    Article  CAS  PubMed  Google Scholar 

  67. Amsalem H et al. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J Immunol. 2014;193(6):3070–9.

    Article  CAS  PubMed  Google Scholar 

  68. La Rocca C et al. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett. 2014;162(1 Pt A):41–8.

    Article  PubMed  CAS  Google Scholar 

  69. Wurfel W. Treatment with granulocyte colony-stimulating factor in patients with repetitive implantation failures and/or recurrent spontaneous abortions. J Reprod Immunol. 2015;108:123–35.

    Article  PubMed  CAS  Google Scholar 

  70. Rahmati M et al. Granulocyte-colony stimulating factor related pathways tested on an endometrial ex-vivo model. PLoS One. 2014;9(9):e102286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod. 2006;12(5):301–8.

    Article  CAS  PubMed  Google Scholar 

  72. Calleja-Agius J, Jauniaux E, Muttukrishna S. Placental villous expression of TNFalpha and IL-10 and effect of oxygen tension in euploid early pregnancy failure. Am J Reprod Immunol. 2012;67(6):515–25.

    Article  CAS  PubMed  Google Scholar 

  73. Choudhury SR, Knapp LA. Human reproductive failure I: immunological factors. Hum Reprod Update. 2001;7(2):113–34.

    Article  CAS  PubMed  Google Scholar 

  74. Mueller-Eckhardt G et al. Immunogenetic and serological investigations in nonpregnant and in pregnant women with a history of recurrent spontaneous abortions. German RSA/IVIG Study Group. J Reprod Immunol. 1994;27(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  75. Kruse C et al. Low serum level of mannan-binding lectin is a determinant for pregnancy outcome in women with recurrent spontaneous abortion. Am J Obstet Gynecol. 2002;187(5):1313–20.

    Article  CAS  PubMed  Google Scholar 

  76. Wang WJ et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010;84(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  77. Bombell S, McGuire W. Cytokine polymorphisms in women with recurrent pregnancy loss: meta-analysis. Aust N Z J Obstet Gynaecol. 2008;48(2):147–54.

    Article  PubMed  Google Scholar 

  78. Choudhury SR, Knapp LA. Human reproductive failure II: immunogenetic and interacting factors. Hum Reprod Update. 2001;7(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  79. Calleja-Agius J et al. Investigation of systemic inflammatory response in first trimester pregnancy failure. Hum Reprod. 2012;27(2):349–57.

    Article  CAS  PubMed  Google Scholar 

  80. Arruvito L et al. IL-6 trans-signaling and the frequency of CD4 + FOXP3+ cells in women with reproductive failure. J Reprod Immunol. 2009;82(2):158–65.

    Article  CAS  PubMed  Google Scholar 

  81. Tsai AF et al. Transmission disequilibrium of maternally-inherited CTLA-4 microsatellite alleles in idiopathic recurrent miscarriage. J Reprod Immunol. 1998;40(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  82. Wang WJ et al. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J Reprod Immunol. 2013;99(1–2):39–45.

    Article  CAS  PubMed  Google Scholar 

  83. Bansal AS, Bajardeen B, Thum MY. The basis and value of currently used immunomodulatory therapies in recurrent miscarriage. J Reprod Immunol. 2012;93(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  84. Szereday L et al. Commitment of decidual haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol. 2012;67(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  85. Saifi B et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod Biomed Online. 2014;29(4):481–9.

    Article  CAS  PubMed  Google Scholar 

  86. Bansal RR et al. IL-21 enhances the potential of human gammadelta T cells to provide B-cell help. Eur J Immunol. 2012;42(1):110–9.

    Article  CAS  PubMed  Google Scholar 

  87. Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta. 2014;35(4):241–8.

    Article  CAS  PubMed  Google Scholar 

  88. Jin LP et al. The CD4 + CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol. 2009;133(3):402–10.

    Article  CAS  PubMed  Google Scholar 

  89. Saito S et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.

    Article  CAS  PubMed  Google Scholar 

  90. Kwak-Kim JY et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod. 2003;18(4):767–73.

    Article  CAS  PubMed  Google Scholar 

  91. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29(2):95–113.

    Article  PubMed  Google Scholar 

  92. Szekeres-Bartho J et al. The role of gamma/delta T cells in the feto-maternal relationship. Semin Immunol. 2001;13(4):229–33.

    Article  CAS  PubMed  Google Scholar 

  93. Mincheva-Nilsson L. Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod Biol Endocrinol. 2003;1:120.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Moghraby JS et al. HLA sharing among couples appears unrelated to idiopathic recurrent fetal loss in Saudi Arabia. Hum Reprod. 2010;25(8):1900–5.

    Article  CAS  PubMed  Google Scholar 

  95. Christiansen OB et al. Association of maternal HLA haplotypes with recurrent spontaneous abortions. Tissue Antigens. 1989;34(3):190–9.

    Article  CAS  PubMed  Google Scholar 

  96. Kolte AM et al. Study of the structure and impact of human leukocyte antigen (HLA)-G-A, HLA-G-B, and HLA-G-DRB1 haplotypes in families with recurrent miscarriage. Hum Immunol. 2010;71(5):482–8.

    Article  CAS  PubMed  Google Scholar 

  97. Ober C et al. Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet. 2003;72(6):1425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cecati M et al. HLA-G and pregnancy adverse outcomes. Med Hypotheses. 2011;76(6):782–4.

    Article  CAS  PubMed  Google Scholar 

  99. Hviid TV et al. Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome. Tissue Antigens. 2004;64(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  100. Moffett A, Hiby SE, Sharkey AM. The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nielsen HS et al. The presence of HLA-antibodies in recurrent miscarriage patients is associated with a reduced chance of a live birth. J Reprod Immunol. 2010;87(1–2):67–73.

    Article  CAS  PubMed  Google Scholar 

  102. Hiby SE et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200(8):957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meuleman T et al. HLA associations and HLA sharing in recurrent miscarriage: a systematic review and meta-analysis. Hum Immunol. 2015;76(5):362–73.

    Article  CAS  PubMed  Google Scholar 

  104. Kanai T et al. Polymorphism of human leukocyte antigen-E gene in the Japanese population with or without recurrent abortion. Am J Reprod Immunol. 2001;45(3):168–73.

    Article  CAS  PubMed  Google Scholar 

  105. Mosaad YM et al. Association between HLA-E *0101 homozygosity and recurrent miscarriage in Egyptian women. Scand J Immunol. 2011;74(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  106. Steffensen R et al. HLA-E polymorphism in patients with recurrent spontaneous abortion. Tissue Antigens. 1998;52(6):569–72.

    Article  CAS  PubMed  Google Scholar 

  107. Takakuwa K et al. Possible susceptibility of the HLA-DPB1*0402 and HLA-DPB1*04 alleles to unexplained recurrent abortion: analysis by means of polymerase chain reaction-restricted fragment length polymorphism method. Am J Reprod Immunol. 1999;42(4):233–9.

    Article  CAS  PubMed  Google Scholar 

  108. Aruna M et al. Novel alleles of HLA-DQ and -DR loci show association with recurrent miscarriages among South Indian women. Hum Reprod. 2011;26(4):765–74.

    Article  CAS  PubMed  Google Scholar 

  109. Steck T et al. HLA-DQA1 and HLA-DQB1 haplotypes in aborted fetuses and couples with recurrent spontaneous abortion. J Reprod Immunol. 1995;29(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  110. Christiansen OB et al. Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage. Hum Reprod Update. 1999;5(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  111. Miklos DB et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005;105(7):2973–8.

    Article  CAS  PubMed  Google Scholar 

  112. Christiansen OB, Steffensen R, Nielsen HS. The impact of anti-HY responses on outcome in current and subsequent pregnancies of patients with recurrent pregnancy losses. J Reprod Immunol. 2010;85(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  113. Nielsen HS et al. Association of HY-restricting HLA class II alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Hum Mol Genet. 2009;18(9):1684–91.

    Article  CAS  PubMed  Google Scholar 

  114. Saini V et al. Cytokines in recurrent pregnancy loss. Clin Chim Acta. 2011;412(9–10):702–8.

    Article  CAS  PubMed  Google Scholar 

  115. Choi YK, Kwak-Kim J. Cytokine gene polymorphisms in recurrent spontaneous abortions: a comprehensive review. Am J Reprod Immunol. 2008;60(2):91–110.

    Article  CAS  PubMed  Google Scholar 

  116. Traina E et al. Polymorphisms in VEGF, progesterone receptor and IL-1 receptor genes in women with recurrent spontaneous abortion. J Reprod Immunol. 2011;88(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  117. Kamali-Sarvestani E et al. Cytokine gene polymorphisms and susceptibility to recurrent pregnancy loss in Iranian women. J Reprod Immunol. 2005;65(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  118. Saijo Y et al. Interleukin-4 gene polymorphism is not involved in the risk of recurrent pregnancy loss. Am J Reprod Immunol. 2004;52(2):143–6.

    Article  PubMed  Google Scholar 

  119. Daher S et al. Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol. 2003;58(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  120. Prigoshin N et al. Cytokine gene polymorphisms in recurrent pregnancy loss of unknown cause. Am J Reprod Immunol. 2004;52(1):36–41.

    Article  PubMed  Google Scholar 

  121. Diehl S, Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39(9):531–6.

    Article  CAS  PubMed  Google Scholar 

  122. Koumantaki Y et al. Detection of interleukin-6, interleukin-8, and interleukin-11 in plasma from women with spontaneous abortion. Eur J Obstet Gynecol Reprod Biol. 2001;98(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  123. Krieg SA et al. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol Hum Reprod. 2012;18(9):442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kalu E et al. Serial estimation of Th1:th2 cytokines profile in women undergoing in-vitro fertilization-embryo transfer. Am J Reprod Immunol. 2008;59(3):206–11.

    Article  CAS  PubMed  Google Scholar 

  125. Kilpatrick DC, Bevan BH, Liston WA. Association between mannan binding protein deficiency and recurrent miscarriage. Hum Reprod. 1995;10(9):2501–5.

    Article  CAS  PubMed  Google Scholar 

  126. Jauniaux E et al. Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Hum Reprod. 2006;21(9):2216–22.

    Article  PubMed  Google Scholar 

  127. Dao Nguyen X, Robinson DS. Fluticasone propionate increases CD4CD25 T regulatory cell suppression of allergen-stimulated CD4CD25 T cells by an IL-10-dependent mechanism. J Allergy Clin Immunol. 2004;114(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  128. Peek EJ et al. Interleukin-10-secreting “regulatory” T cells induced by glucocorticoids and beta2-agonists. Am J Respir Cell Mol Biol. 2005;33(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  129. Quenby S et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril. 2005;84(4):980–4.

    Article  CAS  PubMed  Google Scholar 

  130. Whitley KA, Ural SH. Treatment modalities in recurrent miscarriages without diagnosis. Semin Reprod Med. 2014;32(4):319–22.

    Article  PubMed  Google Scholar 

  131. Ober C et al. Mononuclear-cell immunisation in prevention of recurrent miscarriages: a randomised trial. Lancet. 1999;354(9176):365–9.

    Article  CAS  PubMed  Google Scholar 

  132. Scott JR. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2003;1:CD000112.

    PubMed  Google Scholar 

  133. Worldwide collaborative observational study and meta-analysis on allogenic leukocyte immunotherapy for recurrent spontaneous abortion. Recurrent Miscarriage Immunotherapy Trialists Group. Am J Reprod Immunol, 1994. 32(2): p. 55–72.

  134. Porter TF, Scott JR. Alloimmune causes of recurrent pregnancy loss. Semin Reprod Med. 2000;18(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  135. Christiansen OB et al. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: a randomised, double-blind, placebo-controlled trial. BJOG. 2015;122(4):500–8.

    Article  CAS  PubMed  Google Scholar 

  136. Heilmann L, Schorsch M, Hahn T. CD3-CD56 + CD16+ natural killer cells and improvement of pregnancy outcome in IVF/ICSI failure after additional IVIG-treatment. Am J Reprod Immunol. 2010;63(3):263–5.

    Article  CAS  PubMed  Google Scholar 

  137. van den Heuvel MJ et al. Decline in number of elevated blood CD3(+) CD56(+) NKT cells in response to intravenous immunoglobulin treatment correlates with successful pregnancy. Am J Reprod Immunol. 2007;58(5):447–59.

    Article  PubMed  CAS  Google Scholar 

  138. Moffett A, Regan L, Braude P. Natural killer cells, miscarriage, and infertility. BMJ. 2004;329(7477):1283–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Grimstad.

Ethics declarations

Funding sources

None.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Capsule

Immunogenetic causes of recurrent pregnancy loss are promising areas of research that with further study could lead to improved diagnostic and treatment modalities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimstad, F., Krieg, S. Immunogenetic contributions to recurrent pregnancy loss. J Assist Reprod Genet 33, 833–847 (2016). https://doi.org/10.1007/s10815-016-0720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0720-6

Keywords

Navigation