Skip to main content

Advertisement

Log in

Effects of aging on the male reproductive system

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The study aims to discuss the effects of aging on the male reproductive system. A systematic review was performed using PubMed from 1980 to 2014. Aging is a natural process comprising of irreversible changes due to a myriad of endogenous and environmental factors at the level of all organs and systems. In modern life, as more couples choose to postpone having a child due to various socioeconomic reasons, research for understanding the effects of aging on the reproductive system has gained an increased importance. Paternal aging also causes genetic and epigenetic changes in spermatozoa, which impair male reproductive functions through their adverse effects on sperm quality and count as, well as, on sexual organs and the hypothalamic-pituitary-gonadal axis. Hormone production, spermatogenesis, and testes undergo changes as a man ages. These small changes lead to decrease in both the quality and quantity of spermatozoa. The offspring of older fathers show high prevalence of genetic abnormalities, childhood cancers, and several neuropsychiatric disorders. In addition, the latest advances in assisted reproductive techniques give older men a chance to have a child even with poor semen parameters. Further studies should investigate the onset of gonadal senesce and its effects on aging men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cedars MI. Introduction: childhood implications of parental aging. Fertil Steril. 2015;103(6):1379–80.

    Article  PubMed  Google Scholar 

  2. Belloc S et al. Effect of maternal and paternal age on pregnancy and miscarriage rates after intrauterine insemination. Reprod Biomed Online. 2008;17(3):392–7.

    Article  PubMed  Google Scholar 

  3. Maheshwari A, Hamilton M, Bhattacharya S. Effect of female age on the diagnostic categories of infertility. Hum Reprod. 2008;23(3):538–42.

    Article  PubMed  Google Scholar 

  4. Johnson SL et al. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22–33.

    Article  PubMed  Google Scholar 

  5. Jenkins TG et al. The sperm epigenome, male aging, and potential effects on the embryo. Adv Exp Med Biol. 2015;868:81–93.

    Article  PubMed  Google Scholar 

  6. Yang H et al. The effects of aging on testicular volume and glucose metabolism: an investigation with ultrasonography and FDG-PET. Mol Imaging Biol. 2011;13(2):391–8.

    Article  PubMed  Google Scholar 

  7. Mahmoud AM et al. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88(1):179–84.

    Article  CAS  PubMed  Google Scholar 

  8. Well D et al. Age-related structural and metabolic changes in the pelvic reproductive end organs. Semin Nucl Med. 2007;37(3):173–84.

    Article  PubMed  Google Scholar 

  9. Zenzmaier C, Untergasser G, Berger P. Aging of the prostate epithelial stem/progenitor cell. Exp Gerontol. 2008;43(11):981–5.

    Article  CAS  PubMed  Google Scholar 

  10. Zitzmann M. Effects of age on male fertility. Best Pract Res Clin Endocrinol Metab. 2013;27(4):617–28.

    Article  PubMed  Google Scholar 

  11. Dakouane M et al. A histomorphometric and cytogenetic study of testis from men 29–102 years old. Fertil Steril. 2005;83(4):923–8.

    Article  PubMed  Google Scholar 

  12. Paniagua R et al. Ultrastructure of the aging human testis. J Electron Microsc Tech. 1991;19(2):241–60.

    Article  CAS  PubMed  Google Scholar 

  13. Neaves WB et al. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59(4):756–63.

    Article  CAS  PubMed  Google Scholar 

  14. Untergasser G et al. Proliferative disorders of the aging human prostate: involvement of protein hormones and their receptors. Exp Gerontol. 1999;34(2):275–87.

    Article  CAS  PubMed  Google Scholar 

  15. Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987;47(20):5274–6.

    CAS  PubMed  Google Scholar 

  16. Sampson N et al. The ageing male reproductive tract. J Pathol. 2007;211(2):206–18.

    Article  CAS  PubMed  Google Scholar 

  17. Prakash K et al. Symptomatic and asymptomatic benign prostatic hyperplasia: molecular differentiation by using microarrays. Proc Natl Acad Sci U S A. 2002;99(11):7598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hermann M et al. Aging of the male reproductive system. Exp Gerontol. 2000;35(9-10):1267–79.

    Article  CAS  PubMed  Google Scholar 

  19. Bostwick DG et al. High-grade prostatic intraepithelial neoplasia. Rev Urol. 2004;6(4):171–9.

    PubMed  PubMed Central  Google Scholar 

  20. Johnson L, Petty CS, Neaves WB. Influence of age on sperm production and testicular weights in men. J Reprod Fertil. 1984;70(1):211–8.

    Article  CAS  PubMed  Google Scholar 

  21. Homonnai ZT et al. Semen quality and sex hormone pattern of 29 middle aged men. Andrologia. 1982;14(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  22. Stone BA et al. Age thresholds for changes in semen parameters in men. Fertil Steril. 2013;100(4):952–8.

    Article  PubMed  Google Scholar 

  23. Hellstrom WJ et al. Semen and sperm reference ranges for men 45 years of age and older. J Androl. 2006;27(3):421–8.

    Article  PubMed  Google Scholar 

  24. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

  25. Mukhopadhyay D, Varghese AC, Pal M, Banerjee SK, Bhattacharyya AK, Sharma RK, et al. Semen quality and age-specific changes: a study between two decades on 3,729 male partners of couples with normal sperm count and attending an andrology laboratory for infertility-related problems in an Indian city. Fertil Steril. 2010;93(7):2247–54.

  26. Elzanaty S. Association between age and epididymal and accessory sex gland function and their relation to sperm motility. Arch Androl. 2007;53(3):149–56.

  27. Sloter E, Schmid TE, Marchetti F, Eskenazi B, Nath J, Wyrobek AJ. Quantitative effects of male age on sperm motion. Hum Reprod. 2006;21(11):2868–75.

  28. Pasqualotto FF, Sobreiro BP, Hallak J, Pasqualotto EB, Lucon AM. Sperm concentration and normal sperm morphology decrease and follicle-stimulating hormone level increases with age. BJU Int. 2005;96(7):1087–91.

  29. Eskenazi B, Wryobek AJ, Sloter E, Kidd SA, Moore L, Young S, Moore D. The association of age and semen quality in healthy men. Hum Reprod. 2003;18:447–54.

  30. Paulson RJ, Milligan RC, Sokol RZ. The lack of influence of age on male fertility. Am J Obstet Gynecol. 2001;184:818–22.

  31. Andolz P, Bielsa MA, Vila J. Evolution of semen quality in North-eastern Spain: a study in 22,759 infertile men over a 36 year period. Hum Reprod. 1999;14:731–5.

  32. Bujan L, Mansat A, Pontonnier F, Mieusset R. Time series analysis of sperm concentration in fertile men in Toulouse, France between 1977 and 1992. BMJ. 1996;312(7029):471–2.

  33. Bujan L, Mieusset R, Mondinat C, Mansat A, Pontonnier F. Sperm morphology in fertile men and its age related variation. Andrologia. 1988;20(2):121–8.

  34. Jung A, Schuppe HC, Schill WB. Comparison of semen quality in older and younger men attending an andrology clinic. Andrologia. 2002;34(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  35. Araujo AB, Wittert GA. Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab. 2011;25(2):303–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hammar M. Impaired in vitro testicular endocrine function in elderly men. Andrologia. 1985;17(5):444–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol. 1998;147(8):750–4.

    Article  CAS  PubMed  Google Scholar 

  38. Morley JE et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46(4):410–3.

    Article  CAS  PubMed  Google Scholar 

  39. Pirke KM, Sintermann R, Vogt HJ. Testosterone and testosterone precursors in the spermatic vein and in the testicular tissue of old men. Reduced oxygen supply may explain the relative increase of testicular progesterone and 17 alpha-hydroxyprogesterone content and production in old age. Gerontology. 1980;26(4):221–30.

    Article  CAS  PubMed  Google Scholar 

  40. Feldman HA et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeulen A et al. Estradiol in elderly men. Aging Male. 2002;5(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  42. Gray A et al. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73(5):1016–25.

    Article  CAS  PubMed  Google Scholar 

  43. Liu PY, Beilin J, Meier C, Nguyen TV, Center JR, Leedman PJ, et al. Age-related changes in serum testosterone and sex hormone binding globulin in Australian men: longitudinal analyses of two geographically separate regional cohorts. J Clin Endocrinol Metab. 2007;92(9):3599–603.

  44. Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, Cremonesi G, et al. Activin A serum levels and aging of the pituitary-gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36(8):1403–12.

  45. Kaufman JM, Vermeulen A. Declining gonadal function in elderly men. Baillieres Clin Endocrinol Metab. 1997;11(2):289–309.

    Article  CAS  PubMed  Google Scholar 

  46. Camacho EM et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol. 2013;168(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  47. Veldhuis JD et al. The aging male hypothalamic-pituitary-gonadal axis: pulsatility and feedback. Mol Cell Endocrinol. 2009;299(1):14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bonavera JJ et al. In the male Brown-Norway (BN) male rat, reproductive aging is associated with decreased LH-pulse amplitude and area. J Androl. 1997;18(4):359–65.

    CAS  PubMed  Google Scholar 

  49. Keenan DM, Veldhuis JD. Age-dependent regression analysis of male gonadal axis. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aprioku JS. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil. 2013;14(4):158–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aitken RJ et al. Oxidative stress and male reproductive health. Asian J Androl. 2014;16(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moller P et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014;762:133–66.

    Article  PubMed  CAS  Google Scholar 

  54. Durackova Z. Some current insights into oxidative stress. Physiol Res. 2010;59(4):459–69.

    CAS  PubMed  Google Scholar 

  55. Valko M et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  56. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4(3):327–47.

    Article  CAS  PubMed  Google Scholar 

  57. Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med. 2013;60:1–4.

    Article  CAS  PubMed  Google Scholar 

  58. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Molteni CG, Principi N, Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic Res. 2014;48(10):1163–9.

    Article  CAS  PubMed  Google Scholar 

  60. Aitken RJ et al. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94(2):451–62.

    Article  CAS  PubMed  Google Scholar 

  61. Tamburrino L et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol. 2013;927:121–36.

    Article  CAS  PubMed  Google Scholar 

  63. Vajapey R et al. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol. 2014;5:439.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hekimi S, Lapointe J, Wen Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 2011;21(10):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jang YC, Van Remmen H. The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol. 2009;44(4):256–60.

    Article  CAS  PubMed  Google Scholar 

  66. Lopez-Otin C et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Conley KE, Marcinek DJ, Villarin J. Mitochondrial dysfunction and age. Curr Opin Clin Nutr Metab Care. 2007;10(6):688–92.

    Article  CAS  PubMed  Google Scholar 

  68. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14(3):367–81.

    Article  CAS  PubMed  Google Scholar 

  69. de Lamirande E, Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009;46(4):502–10.

    Article  PubMed  CAS  Google Scholar 

  70. Koksal IT et al. Potential role of reactive oxygen species on testicular pathology associated with infertility. Asian J Androl. 2003;5(2):95–9.

    CAS  PubMed  Google Scholar 

  71. Lavranos G et al. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34(3):298–307.

    Article  CAS  PubMed  Google Scholar 

  72. Aitken RJ et al. Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med. 1996;21(4):495–504.

    Article  CAS  PubMed  Google Scholar 

  73. Agarwal A, Prabakaran SA, Said TM. Prevention of oxidative stress injury to sperm. J Androl. 2005;26(6):654–60.

    Article  CAS  PubMed  Google Scholar 

  74. Durairajanayagam D et al. Lycopene and male infertility. Asian J Androl. 2014;16(3):420–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. El-Taieb MA et al. Oxidative stress and epididymal sperm transport, motility and morphological defects. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S199–203.

    Article  CAS  PubMed  Google Scholar 

  76. Shi TY et al. Effects of reactive oxygen species from activated leucocytes on human sperm motility, viability and morphology. Andrologia. 2012;44 Suppl 1:696–703.

    Article  PubMed  CAS  Google Scholar 

  77. Meseguer M et al. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89(5):1191–9.

    Article  PubMed  Google Scholar 

  78. Nakamura H et al. Detection of oxidative stress in seminal plasma and fractionated sperm from subfertile male patients. Eur J Obstet Gynecol Reprod Biol. 2002;105(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  79. Belloc S et al. Sperm deoxyribonucleic acid damage in normozoospermic men is related to age and sperm progressive motility. Fertil Steril. 2014;101(6):1588–93.

    Article  CAS  PubMed  Google Scholar 

  80. Cohen-Bacrie P et al. Correlation between DNA damage and sperm parameters: a prospective study of 1,633 patients. Fertil Steril. 2009;91(5):1801–5.

    Article  PubMed  Google Scholar 

  81. Wyrobek AJ et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A. 2006;103(25):9601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schmid TE et al. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil Steril. 2012;98(5):1130–1137 e1.

    Article  CAS  PubMed  Google Scholar 

  83. Thomas NS et al. De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet. 2010;47(2):112–5.

    Article  PubMed  Google Scholar 

  84. Green RF et al. Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. Ann Epidemiol. 2010;20(3):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. O’Roak BJ et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Aston KI et al. Divergence of sperm and leukocyte age-dependent telomere dynamics: implications for male-driven evolution of telomere length in humans. Mol Hum Reprod. 2012;18(11):517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Colin A et al. The effect of age on the expression of apoptosis biomarkers in human spermatozoa. Fertil Steril. 2010;94(7):2609–14.

    Article  CAS  PubMed  Google Scholar 

  88. Kao SH et al. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89(5):1183–90.

    Article  CAS  PubMed  Google Scholar 

  89. Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007;28(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  90. Ozkosem B et al. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol. 2015;5:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pastor LM et al. Proliferation and apoptosis in aged and photoregressed mammalian seminiferous epithelium, with particular attention to rodents and humans. Reprod Domest Anim. 2011;46(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  92. Kimura M et al. Balance of apoptosis and proliferation of germ cells related to spermatogenesis in aged men. J Androl. 2003;24(2):185–91.

    Article  PubMed  Google Scholar 

  93. Jiang H et al. Quantitative histological analysis and ultrastructure of the aging human testis. Int Urol Nephrol. 2014;46(5):879–85.

    Article  PubMed  Google Scholar 

  94. Schmid TE et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22(1):180–7.

    Article  CAS  PubMed  Google Scholar 

  95. Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80(6):1420–30.

    Article  PubMed  Google Scholar 

  96. El-Domyati MM et al. Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate-ribosyl)ation pathway. Fertil Steril. 2009;91(5 Suppl):2221–9.

    Article  CAS  PubMed  Google Scholar 

  97. Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol. 2003;31(6):446–54.

    Article  CAS  PubMed  Google Scholar 

  98. Dain L, Auslander R, Dirnfeld M. The effect of paternal age on assisted reproduction outcome. Fertil Steril. 2011;95(1):1–8.

    Article  PubMed  Google Scholar 

  99. Frattarelli JL et al. Male age negatively impacts embryo development and reproductive outcome in donor oocyte assisted reproductive technology cycles. Fertil Steril. 2008;90(1):97–103.

    Article  PubMed  Google Scholar 

  100. de La Rochebrochard E, Thonneau P. Paternal age > or =40 years: an important risk factor for infertility. Am J Obstet Gynecol. 2003;189(4):901–5.

    Article  Google Scholar 

  101. Klonoff-Cohen HS, Natarajan L. The effect of advancing paternal age on pregnancy and live birth rates in couples undergoing in vitro fertilization or gamete intrafallopian transfer. Am J Obstet Gynecol. 2004;191(2):507–14.

    Article  PubMed  Google Scholar 

  102. Robertshaw I et al. The effect of paternal age on outcome in assisted reproductive technology using the ovum donation model. Reprod Sci. 2014;21(5):590–3.

    Article  PubMed  Google Scholar 

  103. Frattarelli JL et al. A luteal estradiol protocol for expected poor-responders improves embryo number and quality. Fertil Steril. 2008;89(5):1118–22.

    Article  CAS  PubMed  Google Scholar 

  104. Luna M et al. Paternal age and assisted reproductive technology outcome in ovum recipients. Fertil Steril. 2009;92(5):1772–5.

    Article  PubMed  Google Scholar 

  105. Begueria R et al. Paternal age and assisted reproductive outcomes in ICSI donor oocytes: is there an effect of older fathers? Hum Reprod. 2014;29(10):2114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ferreira RC et al. Negative influence of paternal age on clinical intracytoplasmic sperm injection cycle outcomes in oligozoospermic patients. Fertil Steril. 2010;93(6):1870–4.

    Article  PubMed  Google Scholar 

  107. Garcia-Ferreyra J et al. High aneuploidy rates observed in embryos derived from donated oocytes are related to male aging and high percentages of sperm DNA fragmentation. Clin Med Insights Reprod Health. 2015;9:21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  109. Yoon SR et al. The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet. 2009;5(7):e1000558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gregoire MC et al. Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod. 2013;19(8):495–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kong A et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488(7412):471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005;6(10):729–42.

    Article  CAS  PubMed  Google Scholar 

  113. Maher GJ, Goriely A, Wilkie AO. Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology. 2014;2(3):304–14.

    Article  CAS  PubMed  Google Scholar 

  114. Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012;90(2):175–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Templado C, Vidal F, Estop A. Aneuploidy in human spermatozoa. Cytogenet Genome Res. 2011;133(2-4):91–9.

  116. Lowe X, Eskenazi B, Nelson DO, Kidd S, Alme A, Wyrobek AJ. Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet. 2001;69(5):1046–54.

  117. Petersen L, Mortensen PB, Pedersen CB. Paternal age at birth of first child and risk of schizophrenia. Am J Psychiatry. 2011;168(1):82–8.

  118. Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213–22. e4.

  119. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  121. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  122. Jenkins TG et al. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Miller B et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr Bull. 2011;37(5):1039–47.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Thomas NS et al. Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet. 2006;119(4):444–50.

    Article  PubMed  Google Scholar 

  125. McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology. 1995;6(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  126. Zhu JL et al. Paternal age and congenital malformations. Hum Reprod. 2005;20(11):3173–7.

    Article  PubMed  Google Scholar 

  127. Hemminki K, Kyyronen P. Parental age and risk of sporadic and familial cancer in offspring: implications for germ cell mutagenesis. Epidemiology. 1999;10(6):747–51.

    Article  CAS  PubMed  Google Scholar 

  128. Yip BH, Pawitan Y, Czene K. Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol. 2006;35(6):1495–503.

    Article  PubMed  Google Scholar 

  129. D’Onofrio BM et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71(4):432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Milekic MH et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry. 2015;20(8):995–1001.

    Article  CAS  PubMed  Google Scholar 

  131. Gancarcikova M et al. The role of telomeres and telomerase complex in haematological neoplasia: the length of telomeres as a marker of carcinogenesis and prognosis of disease. Prague Med Rep. 2010;111(2):91–105.

    CAS  PubMed  Google Scholar 

  132. Nussey DH et al. Measuring telomere length and telomere dynamics in evolutionary biology and ecology. Methods Ecol Evol. 2014;5(4):299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Eisenberg DT. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol. 2011;23(2):149–67.

    Article  PubMed  Google Scholar 

  134. Oeseburg H et al. Telomere biology in healthy aging and disease. Pflugers Arch. 2010;459(2):259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Else T. Telomeres and telomerase in adrenocortical tissue maintenance, carcinogenesis, and aging. J Mol Endocrinol. 2009;43(4):131–41.

    Article  CAS  PubMed  Google Scholar 

  136. Lobetti-Bodoni C et al. Telomeres and telomerase in normal and malignant B-cells. Hematol Oncol. 2010;28(4):157–67.

    Article  CAS  PubMed  Google Scholar 

  137. Kalmbach KH et al. Telomeres and human reproduction. Fertil Steril. 2013;99(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  138. Sebastian C et al. Telomere shortening and oxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol. 2009;183(4):2356–64.

    Article  CAS  PubMed  Google Scholar 

  139. Kimura M et al. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4(2):e37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hjelmborg JB et al. Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell. 2015;14(4):701–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Momand JR, Xu G, Walter CA. The paternal age effect: a multifaceted phenomenon. Biol Reprod. 2013;88(4):108.

    Article  PubMed  CAS  Google Scholar 

  142. Balasch J, Gratacos E. Delayed childbearing: effects on fertility and the outcome of pregnancy. Fetal Diagn Ther. 2011;29(4):263–73.

    Article  PubMed  Google Scholar 

  143. Grossmann M. Diagnosis and treatment of hypogonadism in older men: proceed with caution. Asian J Androl. 2010;12(6):783–6.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Toriello HV et al. Statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10(6):457–60.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Myrskyla M, Fenelon A. Maternal age and offspring adult health: evidence from the health and retirement study. Demography. 2012;49(4):1231–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Alaaddin Hekim for his help in drawing of the graphical figures

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Gunes.

Additional information

Capsule

The study aims to discuss the effects of aging on the male reproductive system. Paternal aging causes genetic and epigenetic changes in spermatozoa, which impair male reproductive functions through their adverse effects on sperm quality and count, as well as, sexual organs and hypothalamic-pituitary-gonadal axis. As a result, the offspring of older fathers show high prevalence of a few genetic abnormalities, childhood cancers, and several neuropsychiatric disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, S., Hekim, G.N.T., Arslan, M.A. et al. Effects of aging on the male reproductive system. J Assist Reprod Genet 33, 441–454 (2016). https://doi.org/10.1007/s10815-016-0663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0663-y

Keywords

Navigation