Skip to main content
Log in

Systemic oxidative stress could predict assisted reproductive technique outcome

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have indicated that OxS (oxidative stress) may appear as a possible reason for poor ART outcome. Our aim was to study OxS levels in both partners of couples seeking Assisted reproduction Technology (ART).

Methods

Altogether 79 couples were recruited. Oxidative DNA damage (8-OHdG) and lipid peroxidation (8-EPI) were measured, and clinical background and ART outcomes were recorded.

Results

Both OxS markers accurately reflected clincal conditions with prominent negative effects attributable to genital tract infections, endometriosis, uterine myoma and smoking. Furthermore, the level of OxS was also affected by partner’s state of health. The highest 8-EPI levels were detected in both partners when biochemically detectable pregnancies did not develop into clinically detectable pregnancies (in women, 97,8 ± 16,7 vs 72.9 ± 22,9, p = 0.007; in men, 89.6 ± 20,4 vs 72,1 ± 22,6, p = 0.049).

Conclusions

To conclude, high grade systemix OxS in both partners may negatively affect the maintenance and outcome of pregnancy. Applying the detection of OxS in ART patients may select patients with higher success rate and/or those who require antioxidant therapy. This would lead to improvement of ART outcome as well as natural fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology. Fertil Steril. 2009;92:1520–4.

  2. National Health and Medical Research Council. Ethical guidelines on assisted reproductive technology. Available at: http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/e28.pdf. Accessed 2 Feb 2014.

  3. Ferraretti AP, Goossens V, de Mouzon J, Bhattacharya S, Castilla JA, Korsak V, et al. Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Hum Reprod. 2012;27:2571–84.

    Article  CAS  PubMed  Google Scholar 

  4. Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18:1265–72.

    Article  CAS  PubMed  Google Scholar 

  5. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod BioMed Online. 2013;26:68–78.

    Article  CAS  PubMed  Google Scholar 

  7. Knox CL, Allan JA, Allan JM, Edirisinghe WR, Stenzel D, Lawrence FA, et al. Ureaplasma parvum and Ureaplasma urealyticum are detected in semen after washing before assisted reproductive technology procedures. Fertil Steril. 2003;80:921–9.

    Article  PubMed  Google Scholar 

  8. Li MQ, Jin LP. Ovarian stimulation for in vitro fertilization alters the protein profile expression in endometrial secretion. Int J Clin Exp Pathol. 2013;6:1964–7.

    PubMed Central  PubMed  Google Scholar 

  9. Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF–ET. Hum Reprod. 2006;2:3036–43.

    Article  Google Scholar 

  10. Fiedler K, Ezcurra D. Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol. 2012;10:32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26:279–85.

    Article  CAS  PubMed  Google Scholar 

  12. Meseguer M, Martínez-Conejero JA, O’Connor JE, Pellicer A, Remohí J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89:1191–9.

    Article  PubMed  Google Scholar 

  13. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Montuschi P, Barnes P, Roberts LJ. Insights into oxidative stress: the isoprostanes. Curr Med Chem. 2007;14:703–17.

    Article  CAS  PubMed  Google Scholar 

  15. Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, et al. Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction. 2013;145:227–35.

    Article  CAS  PubMed  Google Scholar 

  16. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297–301.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.

    Google Scholar 

  18. WHO, editor. Laboratory manual for examination of human semen and sperm–cervical mucus interaction. 4th ed. New York: Cambridge University Press; 1999.

    Google Scholar 

  19. Punab M, Lõivukene K, Kermes K, Mändar R. The limit of leucocytospermia from the microbiological viewpoint. Andrologia. 2003;35:271–8.

    Article  PubMed  Google Scholar 

  20. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenecity in human subjects. Br J Nutr. 2003;90:449–56.

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 1999.

    Google Scholar 

  22. Sies H. Oxidative stress: oxidants and antioxidants. London: Academic; 1991.

    Google Scholar 

  23. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865–79.

    Article  CAS  PubMed  Google Scholar 

  24. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65:948–56.

    CAS  PubMed  Google Scholar 

  25. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50.

    Article  CAS  PubMed  Google Scholar 

  26. Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod BioMed Online. 2009;18:864–80.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2011;47:344–52.

    Article  PubMed  Google Scholar 

  28. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25:287–99.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sharma I, Dhaliwal L, Saha S, Sangwan S, Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil Steril. 2010;94:63–70.

    Article  CAS  PubMed  Google Scholar 

  30. Bogavac M, Lakic N, Simin N, Nikolic A, Sudji J, Bozin B. Bacterial vaginosis and biomarkers of oxidative stress in amniotic fluid. J Matern Fetal Neonatal Med. 2012;25:1050–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48:425–35.

    CAS  PubMed  Google Scholar 

  32. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3:175–94.

    Article  PubMed  Google Scholar 

  33. Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De Stefani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod BioMed Online. 2012;25:300–6.

    Article  CAS  PubMed  Google Scholar 

  34. Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function — in sickness and in health. J Androl. 2012;33:1096–106.

    Article  CAS  PubMed  Google Scholar 

  35. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26.

    Article  CAS  PubMed  Google Scholar 

  36. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40.

    Article  PubMed  Google Scholar 

  37. Ménézo Y, Entezami F, Lichtblau I, Belloc S, Cohen M, Dale B. Oxidative stress and fertility: incorrect assumptions and ineffective solutions? Zygote. 2014;22(1):80–90.

    Article  PubMed  Google Scholar 

  38. Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol. 2009;71:240–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kullisaar T, Türk S, Punab M, Mändar R. Oxidative stress – cause or consequence of male genital tract disorders? Prostate. 2012;72:977–83.

    Article  CAS  PubMed  Google Scholar 

  40. Kullisaar T, Türk S, Punab M, Korrovits P, Kisand K, Rehema A, et al. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2008;40:161–72.

    Article  CAS  PubMed  Google Scholar 

  41. Taha EA, Ez-Aldin AM, Sayed SK, Ghandour NM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidative stress, zinc in fertile men. Urology. 2012;80:822–5.

    Article  PubMed  Google Scholar 

  42. Mändar R, Kullisaar T, Borovkova N, Punab M. Sexual intercourse with leucocytospermic men may be a possible booster of oxidative stress in female partners of infertile couples. Andrology. 2013;1:464–8.

    Article  PubMed  Google Scholar 

  43. Borovkova N, Korrovits P, Ausmees K, Türk S, Jõers K, Punab M, et al. Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe. 2011;17:414–8.

    Article  PubMed  Google Scholar 

  44. Velthut A, Zilmer M, Zilmer K, Kaart T, Karro H, Salumets A. Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod BioMed Online. 2013;26:345–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by Enterprise Estonia (Grant no. EU 30020), Estonian Ministry of Education and Research (Target Financing SF0180132s08, Institutional Research Funding IUT 20–42, Institutional Research Funding IUT 15–19 and Scientific Collection Financing KOGU-HUMB) and University of Tartu (Grant no. SARMBARENG).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mändar.

Additional information

Capsule

High grade systemic oxidative stress in both partners affects negatively the maintenance of pregnancy, therefore its testing in ART patients may select the patients with higher success rate and/or those who need antioxidant therapy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 88 kb)

ESM 2

(DOC 42 kb)

ESM 3

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahelik, A., Mändar, R., Korrovits, P. et al. Systemic oxidative stress could predict assisted reproductive technique outcome. J Assist Reprod Genet 32, 699–704 (2015). https://doi.org/10.1007/s10815-015-0466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0466-6

Keywords

Navigation