Skip to main content
Log in

Molecular analysis of products of conception obtained by hysteroembryoscopy from infertile couples

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To analyze the molecular cytogenetic data obtained from products of conception (POC) obtained by selective biopsy of first trimester miscarriages and to estimate the rate of chromosomal anomalies in miscarriages from pregnancies achieved by natural conception (NC) or by assisted reproductive technology (ART) interventions.

Methods

We used KaryoLite™ BoBs™ (PerkinElmer LAS, Wallac, Turku, Finland) technology to analyze 189 samples from ART or NC pregnancies.

Results

All POC were successfully evaluated. A higher incidence of chromosomal abnormalities was observed in POC after ART using the patient’s own oocytes than from NC pregnancies (62.7 % vs. 40.6 %; p < 0.05). The lowest incidence of chromosomal abnormalities was observed in POCs ART using donor eggs from women younger than 35 years (12.8 %). No statistical differences in the percentage of abnormal miscarriages were observed in correlation with sperm concentration: a sperm concentration less than 5 million/mL produced 75 % abnormal results and a concentration higher than 5 million/mL produced 51 %.

Conclusions

POC analysis is essential to determine the cause of pregnancy loss. Using culture-independent molecular biology techniques to analyze POCs avoids limitations such as growth failure and reduces the time required for analysis. Selective biopsy of fetal tissue by hysteroembryoscopy avoids the risk of misdiagnosis due to maternal cell contamination. Our results show that maternal age, sperm quality, and ART-assisted pregnancies are risk factors for abnormal gestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jacobs PA, Hassold TJ. Chromosome abnormalities: Origin and etiology in abortions and livebirths. In: Vogel F, Sperling K, editors. Human Genetics. Berlin: Springer; 1987. p. 233–244.

  2. Hassold TJ. A cytogenetic study of repeated spontaneous abortions. Am J Med Genet. 1980;32:723–30.

    CAS  Google Scholar 

  3. Hassold T, Chen N, Funkhouser J, et al. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet. 1980;44(Pt 2):151–78.

    Article  CAS  PubMed  Google Scholar 

  4. Simpson JL. Incidence and timing of pregnancy losses: relevance to evaluating safety of early prenatal diagnosis. Am J Med Genet. 1990;35(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  5. Boué J, Bou A, Lazar P. Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology. 1975;12(1):11–26.

    Article  PubMed  Google Scholar 

  6. Kajii T, Ferrier A, Niikawa N, Takahara H, Ohama K, Avirachan S. Anatomic and chromosomal anomalies in 639 spontaneous abortuses. Hum Genet. 1980;55(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  7. Robberecht C, Schuddinck V, Fryns JP, Vermeesch JR. Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls. Genet Med. 2009;11(9):646–54.

    Article  PubMed  Google Scholar 

  8. Kalousek D, Lau A. Pathology of spontaneous abortion. In: Dimmick J, Kalousek D, editors. Developmental pathology of the embryo and fetus. Philadelphia: Lippincott; 1992. p. 55–82.

    Google Scholar 

  9. Reddy KS. Double trisomy in spontaneous abortions. Hum Genet. 1997;101:339–45.

    Article  CAS  PubMed  Google Scholar 

  10. Robberecht C, Pexsters A, Deprest J, Fryns JP, D’Hooghe T, Vermeesch JR. Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from couples with recurrent pregnancy loss. Prenat Diagn. 2012;32(10):933–42.

    Article  PubMed  Google Scholar 

  11. van den Boogaard E, Kaandorp SP, Franssen MT, et al. Consecutive or non-consecutive recurrent miscarriage: is there any difference in carrier status? Hum Reprod. 2010;25(6):1411–4.

    Article  PubMed  Google Scholar 

  12. Stirrat GM. Recurrent miscarriage. Lancet. 1990;336(8716):673–5.

    Article  CAS  PubMed  Google Scholar 

  13. Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil Steril. 2008;90(5 Suppl):S60.

    Google Scholar 

  14. Stephenson M, Kutteh W. Evaluation and management of recurrent early pregnancy loss. Clin Obstet Gynecol. 2007;50(1):132–45.

    Article  PubMed  Google Scholar 

  15. Jauniaux E, Farquharson RG, Christiansen OB, Exalto N. Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Hum Reprod. 2006;21(9):2216–22.

    Article  PubMed  Google Scholar 

  16. Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertil Steril. 1996;66(1):24–9.

    CAS  PubMed  Google Scholar 

  17. Marquard K, Westphal LM, Milki AA, Lathi RB. Etiology of recurrent pregnancy loss in women over the age of 35 years. Fertil Steril. 2010;94(4):1473–7.

    Article  PubMed  Google Scholar 

  18. Grati FR, Gomes DM, Ganesamoorthy D, et al. Application of a new molecular technique for the genetic evaluation of products of conception. Prenat Diagn. 2013;33(1):32–41.

    Article  PubMed  Google Scholar 

  19. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.

    Article  Google Scholar 

  20. Ferro J, Martinez MC, Lara C, Pellicer A, Remohi J, Serra V. Improved accuracy of hysteroembryoscopic biopsies for karyotyping early missed abortions. Fertil Steril. 2003;80(5):1260–4.

    Article  PubMed  Google Scholar 

  21. Bell KA, Van Deerlin PG, Haddad BR, Feinberg RF. Cytogenetic diagnosis of “normal 46, XX” karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril. 1999;71(2):334–41.

    Article  CAS  PubMed  Google Scholar 

  22. Jarrett KL, Michaelis RC, Phelan MC, Vincent VA, Best RG. Microsatellite analysis reveals a high incidence of maternal cell contamination in 46, XX products of conception consisting of villi or a combination of villi and membranous material. Am J Obstet Gynecol. 2001;185(1):198–203.

    Article  CAS  PubMed  Google Scholar 

  23. Hassold T, Quillen SD, Yamane JA. Sex ratio in spontaneous abortions. Ann Hum Genet. 1983;47(Pt 1):39–47.

    Article  CAS  PubMed  Google Scholar 

  24. Lathi RB, Gustin SL, Keller J, et al. Reliability of 46, XX results on miscarriage specimens: a review of 1,222 first-trimester miscarriage specimens. Fertil Steril. 2014;101(1):178–82.

    Article  PubMed  Google Scholar 

  25. Caramins MC, Saville T, Shakeshaft R, et al. A comparison of molecular and cytogenetic techniques for the diagnosis of pregnancy loss. Genet Med. 2011;13(1):46–51.

    Article  PubMed  Google Scholar 

  26. Donaghue C, Mann K, Docherty Z, Mazzaschi R, Fear C, Ogilvie C. Combined QF-PCR and MLPA molecular analysis of miscarriage products: an efficient and robust alternative to karyotype analysis. Prenat Diagn. 2010;30(2):133–7.

    Article  PubMed  Google Scholar 

  27. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese MC. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet. 2004;74(6):1168–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Menten B, Swerts K, Delle Chiaie B, et al. Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples. BMC Med Genet. 2009;10:89.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Doria S, Lima V, Carvalho B, et al. Application of touch FISH in the study of mosaic tetraploidy and maternal cell contamination in pregnancy losses. J Assist Reprod Genet. 2010;27(11):657–62.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Vialard F, Simoni G, Gomes DM, et al. Prenatal BACs-on-beads: the prospective experience of five prenatal diagnosis laboratories. Prenat Diagn. 2012;32(4):329–35.

    Article  CAS  PubMed  Google Scholar 

  31. Dunbar SA. Applications of luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 2006;363(1–2):71–82.

    Article  CAS  PubMed  Google Scholar 

  32. Bettio D, Venci A, Levi Setti PE. Chromosomal abnormalities in miscarriages after different assisted reproduction procedures. Placenta. 2008;29(Suppl B):126–8.

    Article  PubMed  Google Scholar 

  33. Guerneri S, Bettio D, Simoni G, Brambati B, Lanzani A, Fraccaro M. Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod. 1987;2(8):735–9.

    CAS  PubMed  Google Scholar 

  34. Nagaishi M, Yamamoto T, Iinuma K, Shimomura K, Berend SA, Knops J. Chromosome abnormalities identified in 347 spontaneous abortions collected in japan. J Obstet Gynaecol Res. 2004;30(3):237–41.

    Article  PubMed  Google Scholar 

  35. Yusuf RZ, Naeem R. Cytogenetic abnormalities in products of conception: a relationship revisited. Am J Reprod Immunol. 2004;52(1):88–96.

    Article  PubMed  Google Scholar 

  36. Morales C, Sanchez A, Bruguera J, et al. Cytogenetic study of spontaneous abortions using semi-direct analysis of chorionic villi samples detects the broadest spectrum of chromosome abnormalities. Am J Med Genet A. 2008;146A(1):66–70.

    Article  PubMed  Google Scholar 

  37. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7(4):251–63.

    Article  PubMed  Google Scholar 

  38. Rodrigo L, Peinado V, Mateu E, et al. Impact of different patterns of sperm chromosomal abnormalities on the chromosomal constitution of preimplantation embryos. Fertil Steril. 2010;94(4):1380–6.

    Article  CAS  PubMed  Google Scholar 

  39. Rubio C, Gil-Salom M, Simon C, et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum Reprod. 2001;16(10):2084–92.

    Article  CAS  PubMed  Google Scholar 

  40. Ballif BC, Kashork CD, Saleki R, et al. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization. Prenat Diagn. 2006;26(4):333–9.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeesch JR, Melotte C, Froyen G, et al. Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem. 2005;53(3):413–22.

    Article  CAS  PubMed  Google Scholar 

  42. Ballif BC, Rorem EA, Sundin K, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A. 2006;140(24):2757–67.

    Article  PubMed  Google Scholar 

  43. Cheung SW, Shaw CA, Scott DA, et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 2007;143A(15):1679–86.

    Article  PubMed  Google Scholar 

  44. Al-Asmar N, Peinado V, Vera M, et al. Chromosomal abnormalities in embryos from couples with a previous aneuploid miscarriage. Fertil Steril. 2012;98(1):145–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

The present study was conducted after the approval from our IRB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Campos-Galindo.

Additional information

Capsule POC analysis is essential to determine the cause of pregnancy loss. Using molecular tecnique, Karyolite BoBs, avoid growth failure and reduce time requires for analysis. Selective biopsy of fetal tissue by hysteroembryoscopy avoids the risk of misdiagnosis due to maternal cell contamination.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Galindo, I., García-Herrero, S., Martínez-Conejero, J.A. et al. Molecular analysis of products of conception obtained by hysteroembryoscopy from infertile couples. J Assist Reprod Genet 32, 839–848 (2015). https://doi.org/10.1007/s10815-015-0460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0460-z

Keywords

Navigation