Skip to main content

Advertisement

Log in

Reduced uterine receptivity for mouse embryos developed from in-vitro matured oocytes

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The outcomes of in-vitro maturation (IVM) are inferior compared to those of IVF. The purpose of the study was to compare the implantation rates of IVM- and in-vivo maturation (IVO)- derived embryos, and to evaluate their effects on uterine receptivity.

Methods

The IVM- and IVO- oocytes were obtained from female mice, fertilized and transferred to separate oviducts of the same pseudo-pregnant mice. After 5 days, the implanted blastocysts were dissected out of the uterine horns, and the uterine horns were analyzed for the expression of mRNAs encoding leukemia inhibitory factor, heparin-binding epidermal growth factor, insulin-like growth factor binding protein-4, progesterone receptor, and Hoxa-10.

Results

The maturation rate of the IVM- oocytes was 81.2 %. The fertilization rate of the IVM oocytes was lower than that of the IVO oocytes (50.5 % vs. 78.0 %, p = 0.038), as was their implantation rate (14.5 % vs. 74.7 %, p < 0.001). All 5 mRNAs examined were expressed at significantly lower levels in the uterine horns that received the IVM-derived embryos than in those that received the IVO-derived embryos.

Conclusions

The IVM-derived embryos are less competent in inducing expression of implantation-related mRNAs in the uterine horn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9:35–48.

    Article  CAS  PubMed  Google Scholar 

  2. Kim BK, Lee SC, Kim KJ, Han CH, Kim JH. In vitro maturation, fertilization, and development of human germinal vesicle oocytes collected from stimulated cycles. Fertil Steril. 2000;74:1153–8.

    Article  CAS  PubMed  Google Scholar 

  3. Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction. 2001;121:51–75.

    Article  CAS  PubMed  Google Scholar 

  4. Lin YH, Hwang JL. In vitro maturation of human oocytes. Taiwan J Obstet Gynecol. 2006;45:95–9.

    Article  PubMed  Google Scholar 

  5. Child TJ, Phillips SJ, Abdul-Jalil AK, Gulekli B, Tan SL. A comparison of in vitro maturation and in vitro fertilization for women with polycystic ovaries. Obstet Gynecol. 2002;100:665–70.

    Article  PubMed  Google Scholar 

  6. Son WY, Tan SL. Laboratory and embryological aspects of hCG-primed in vitro maturation cycles for patients with polycystic ovaries. Hum Reprod Update. 2010;16:675–89.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J-Z, Zhou W, Zhang W, Ge H-S, Huang X-F, Lin J-J. In vitro maturation and fertilization of oocytes from unstimulated ovaries in infertile women with polycystic ovary syndrome. Fertil Steril. 2009;91:2568–71.

    Article  PubMed  Google Scholar 

  8. Gremeau AS, Andreadis N, Fatum M, Craig J, Turner K, McVeigh E, et al. In-vitro maturation or in vitro fertilization for women with polycystic ovaries? A case–control study of 194 treatment cycles. Fertil Steril. 2012;98:355–60.

    Article  PubMed  Google Scholar 

  9. Thibault C. Are follicular maturation and oocyte maturation independent processes? J Reprod Fertil. 1977;51:1–15.

    Article  CAS  PubMed  Google Scholar 

  10. Banwell KM, Thompson JG. In vitro maturation of Mammalian oocytes: outcomes and consequences. Semin Reprod Med. 2008;26:162–74.

    Article  CAS  PubMed  Google Scholar 

  11. Combelles CM, Cekleniak NA, Racowsky C, Albertini DF. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum Reprod. 2002;17:1006–16.

    Article  CAS  PubMed  Google Scholar 

  12. Kashiwagi A, DiGirolamo CM, Kanda Y, Niikura Y, Esmon CT, Hansen TR, et al. The postimplantation embryo differentially regulates endometrial gene expression and decidualization. Endocrinology. 2007;148:4173–84.

    Article  CAS  PubMed  Google Scholar 

  13. Wakuda K, Takakura K, Nakanishi K, Kita N, Shi H, Hirose M, et al. Embryo-dependent induction of embryo receptivity in the mouse endometrium. J Reprod Fertil. 1999;115:315–24.

    Article  CAS  PubMed  Google Scholar 

  14. Elizur SE, Son W-Y, Yap R, Gidoni Y, Levin D, Demirtas E, et al. Comparison of low-dose human menopausal gonadotropin and micronized 17β-estradiol supplementation in in vitro maturation cycles with thin endometrial lining. Fertil Steril. 2009;92:907–12.

    Article  CAS  PubMed  Google Scholar 

  15. Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med. 2011;29:24–37.

    Article  CAS  PubMed  Google Scholar 

  16. Lau EC, Li ZQ, Santos V, Slavkin HC. Messenger RNA phenotyping for semi-quantitative comparison of glucocorticoid receptor transcript levels in the developing embryonic mouse palate. J Steroid Biochem Mol Biol. 1993;46:751–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gray K, Eitzman B, Raszmann K, Steed T, Geboff A, McLachlan J, et al. Coordinate regulation by diethylstilbestrol of the platelet-derived growth factor-A (PDGF-A) and -B chains and the PDGF receptor alpha- and beta-subunits in the mouse uterus and vagina: potential mediators of estrogen action. Endocrinology. 1995;136:2325–40.

    CAS  PubMed  Google Scholar 

  18. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.

    Article  PubMed  Google Scholar 

  19. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993;90:10159–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang S, Lin H, Kong S, Wang S, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34:939–80.

    Article  PubMed  Google Scholar 

  21. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359:76–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lass A, Weiser W, Munafo A, Loumaye E. Leukemia inhibitory factor in human reproduction. Fertil Steril. 2001;76:1091–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A. 1991;88:11408–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yang ZM, Le SP, Chen DB, Cota J, Siero V, Yasukawa K, et al. Leukemia inhibitory factor, LIF receptor, and gp130 in the mouse uterus during early pregnancy. Mol Reprod Dev. 1995;42:407–14.

    Article  CAS  PubMed  Google Scholar 

  25. Vogiagis D, Marsh MM, Fry RC, Salamonsen LA. Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle. J Endocrinol. 1996;148:95–102.

    Article  CAS  PubMed  Google Scholar 

  26. Aghajanova L. Leukemia inhibitory factor and human embryo implantation. Ann N Y Acad Sci. 2004;1034:176–83.

    Article  CAS  PubMed  Google Scholar 

  27. Simon C, Martin JC, Pellicer A. Paracrine regulators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:815–26.

    Article  CAS  PubMed  Google Scholar 

  28. Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120:1071–83.

    CAS  PubMed  Google Scholar 

  29. Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet. 1997;21:102–8.

    Article  CAS  PubMed  Google Scholar 

  30. Birdsall MA, Hopkisson JF, Grant KE, Barlow DH, Mardon HJ. Expression of heparin-binding epidermal growth factor messenger RNA in the human endometrium. Mol Hum Reprod. 1996;2:31–4.

    Article  CAS  PubMed  Google Scholar 

  31. Giudice LC, Milkowski DA, Lamson G, Rosenfeld RG, Irwin JC. Insulin-like growth factor binding proteins in human endometrium: steroid-dependent messenger ribonucleic acid expression and protein synthesis. J Clin Endocrinol Metab. 1991;72:779–87.

    Article  CAS  PubMed  Google Scholar 

  32. Markoff E, Henemyre C, Fellows J, Pennington E, Zeitler PS, Cedars MI. Localization of insulin-like growth factor binding protein-4 expression in the mouse uterus during the peri-implantation period. Biol Reprod. 1995;53:1103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Henemyre C, Markoff E. Decidualization and expression of insulin-like growth factor-I and insulin-like growth factor binding protein-4 in the periimplantation mouse uterus. Biol Reprod. 1998;58:801–6.

    Article  CAS  PubMed  Google Scholar 

  34. Tranguch S, Smith DF, Dey SK. Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation. Reprod BioMed Online. 2006;13:651–60.

    Article  CAS  PubMed  Google Scholar 

  35. Parandoosh Z, Crombie DL, Tetzke TA, Hayes JS, Heap RB, Wang MW. Progesterone and oestrogen receptors in the decidualized mouse uterus and effects of different types of anti-progesterone treatment. J Reprod Fertil. 1995;105:215–20.

    Article  CAS  PubMed  Google Scholar 

  36. Franco HL, Jeong JW, Tsai SY, Lydon JP, DeMayo FJ. In vivo analysis of progesterone receptor action in the uterus during embryo implantation. Semin Cell Dev Biol. 2008;19:178–86.

    Article  CAS  PubMed  Google Scholar 

  37. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, et al. Molecular cues to implantation. Endocr Rev. 2004;25:341–73.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor HS. The role of HOX genes in human implantation. Hum Reprod Update. 2000;6:75–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lim H, Ma L, Ma WG, Maas RL, Dey SK. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol. 1999;13:1005–17.

    Article  CAS  PubMed  Google Scholar 

  40. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 1995;374:460–3.

    Article  CAS  PubMed  Google Scholar 

  41. Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996;122:2687–96.

    CAS  PubMed  Google Scholar 

  42. Holzer H, Scharf E, Chian RC, Demirtas E, Buckett W, Tan SL. In vitro maturation of oocytes collected from unstimulated ovaries for oocyte donation. Fertil Steril. 2007;88:62–7.

    Article  PubMed  Google Scholar 

  43. De Vos M, Ortega-Hrepich C, Albuz FK, Guzman L, Polyzos NP, Smitz J, et al. Clinical outcome of non-hCG-primed oocyte in-vitro maturation treatment in patients with polycystic ovaries and polycystic ovary syndrome. Fertil Steril. 2011;96:860–4.

    Article  PubMed  Google Scholar 

  44. Thomas FH, Walters KA, Telfer EE. How to make a good oocyte: an update on in-vitro models to study follicle regulation. Hum Reprod Update. 2003;9:541–55.

    Article  PubMed  Google Scholar 

  45. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61:234–48.

    Article  CAS  PubMed  Google Scholar 

  46. Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8.

    Article  CAS  PubMed  Google Scholar 

  47. Hoozemans DA, Schats R, Lambalk CB, Homburg R, Hompes PG. Human embryo implantation: current knowledge and clinical implications in assisted reproductive technology. Reprod BioMed Online. 2004;9:692–715.

    Article  PubMed  Google Scholar 

  48. Wang Y, Oct S-A, Chian R-C. Effect of gonadotrophin stimulation on mouse oocyte quality and subsequent embryonic development in vitro. Reprod BioMed Online. 2006;12:304–14.

    Article  PubMed  Google Scholar 

  49. Trounson A, Anderiesz C, Jones GM, Kausche A, Lolatgis N, Wood C. Oocyte maturation. Hum Reprod. 1998;13 Suppl 3:52–62. discussion 71–5.

    Article  CAS  PubMed  Google Scholar 

  50. Zeng H-T, Yeung WSB, Cheung MPL, Ho P-C, Lee CKF, Zhuang G-l, et al. In vitro-matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution. Fertil Steril. 2009;91:900–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, et al. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod. 2007;22:1681–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sanfins A, Lee GY, Plancha CE, Overstrom EW, Albertini DF. Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes. Biol Reprod. 2003;69:2059–67.

    Article  CAS  PubMed  Google Scholar 

  53. Wynn P, Picton HM, Krapez JA, Rutherford AJ, Balen AH, Gosden RG. Pretreatment with follicle stimulating hormone promotes the numbers of human oocytes reaching metaphase II by in-vitro maturation. Hum Reprod. 1998;13:3132–8.

    Article  CAS  PubMed  Google Scholar 

  54. Mikkelsen AL, Lindenberg S. Benefit of FSH priming of women with PCOS to the in vitro maturation procedure and the outcome: a randomized prospective study. Reproduction. 2001;122:587–92.

    Article  CAS  PubMed  Google Scholar 

  55. Chian RC, Buckett WM, Tulandi T, Tan SL. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Hum Reprod. 2000;15:165–70.

    Article  CAS  PubMed  Google Scholar 

  56. Hegele-Hartung C, Kuhnke J, Lessl M, Grondahl C, Ottesen J, Beier HM, et al. Nuclear and cytoplasmic maturation of mouse oocytes after treatment with synthetic meiosis-activating sterol in vitro. Biol Reprod. 1999;61:1362–72.

    Article  CAS  PubMed  Google Scholar 

  57. Cavilla JL, Kennedy CR, Byskov AG, Hartshorne GM. Human immature oocytes grow during culture for IVM. Hum Reprod. 2008;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  58. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  CAS  PubMed  Google Scholar 

  59. Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296:514–21.

    Article  CAS  PubMed  Google Scholar 

  60. Yeo CX, Gilchrist RB, Thompson JG, Lane M. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod. 2008;23:67–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Shin Kong Wu Ho-Su Memorial Hospital (SKH-8302-100-DR-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiann-Loung Hwang.

Additional information

Capsule Embryos derived from in-vitro matured oocytes are less competent in inducing uterine receptivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH., Tsai, CY., Huang, LW. et al. Reduced uterine receptivity for mouse embryos developed from in-vitro matured oocytes. J Assist Reprod Genet 31, 1713–1718 (2014). https://doi.org/10.1007/s10815-014-0354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0354-5

Keywords

Navigation