Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 8, pp 1065–1071 | Cite as

Lack of association of KATNAL1 gene sequence variants and azoospermia in humans

  • Anastasia M. Fedick
  • Kyle Eckert
  • Katharine Thompson
  • Eric J. Forman
  • Batsal Devkota
  • Nathan R. Treff
  • Deanne Taylor
  • Richard T. ScottJr



A recent experiment indicated that a loss of function mutation in the murine Katnal1 gene resulted in male factor infertility due to premature exfoliation of spermatids. This study investigated the relevance of this gene to infertility in humans.


Multiple methods of genetic analysis were employed to investigate whether mutations in human KATNAL1 have a causative role in male infertility. This was a genetic association study, which included DNA samples from 105 men with non-obstructive azoospermia (NOA) and 242 anonymous sperm donor controls. 28 commercially available TaqMan SNP assays were used to haplotype samples from both groups and genetically tag regions of interest across the entire gene. AmpliSeq primers were then designed for identified regions so that targeted next-generation sequencing (NGS) could be used to identify causative variants.


Four SNPs in the 3’UTR demonstrated a putative association with NOA. The AmpliSeq primers designed for the 3’UTR provided 83 % coverage of the 7,202 basepairs within the regions of interest. Variant sites were analyzed against genetic models to identify sequence polymorphisms which associated with NOA. No variants met standard criteria for significance when tested between the groups.


This study suggests a lack of association of KATNAL1 gene sequence variants and azoospermia in humans.


KATNAL1 Azoospermia Genetic association Next generation sequencing Tagging SNP 


  1. 1.
    De Kretser DM, Baker HW. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab. 1999;84:3443–50.PubMedGoogle Scholar
  2. 2.
    McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, et al. Histological evaluation of the human testis–approaches to optimizing the clinical value of the assessment: mini review. Hum Reprod. 2007;22:2–16.PubMedCrossRefGoogle Scholar
  3. 3.
    O'Flynn O'Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93:1–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Aston KI, Carrell DT. Emerging evidence for the role of genomic instability in male factor infertility. Syst Biol Reprod Med. 2012;58:71–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Waclawska A, Kurpisz M. Key functional genes of spermatogenesis identified by microarray analysis. Syst Biol Reprod Med. 2012;58:229–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Aston KI, Carrell DT. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl. 2009;30:711–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A. 2003;100:12201–6.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    McNally FJ, Vale RD. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell. 1993;75:419–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Hartman JJ, Mahr J, McNally K, et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell. 1998;93:277–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Hartman JJ, Vale RD. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science. 1999;286:782–5.PubMedCrossRefGoogle Scholar
  11. 11.
    McNally KP, Bazirgan OA, McNally FJ. Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J Cell Sci. 2000;113(Pt 9):1623–33.PubMedGoogle Scholar
  12. 12.
    O'Donnell L, Rhodes D, Smith SJ, et al. An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet. 2012;8:e1002698.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Smith LB, Milne L, Nelson N, et al. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility. PLoS Genet. 2012;8:e1002697.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Massart A, Lissens W, Tournaye H, et al. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14:40–8.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Srayko M, Buster DW, Bazirgan OA, et al. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 2000;14:1072–84.PubMedCentralPubMedGoogle Scholar
  16. 16.
    McNally KP, McNally FJ. The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity. Mol Biol Cell. 2011;22:1550–60.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mains PE, Kemphues KJ, Sprunger SA, et al. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics. 1990;126:593–605.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Dymek EE, Smith EF. PF19 encodes the p60 catalytic subunit of katanin and is required for assembly of the flagellar central apparatus in Chlamydomonas. J Cell Sci. 2012;125:3357–66.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Johnson AD, Handsaker RE, Pulit SL, et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cock PJ, Fields CJ, Goto N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38:1767–71.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Lam HY, Clark MJ, Chen R, et al. Performance comparison of whole-genome sequencing platforms. Nat Biotechnol. 2012;30:78–82.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Robasky K, Lewis NE. Church GM. Nat Rev Genet: The role of replicates for error mitigation in next-generation sequencing; 2013.Google Scholar
  23. 23.
    Ratan A, Miller W, Guillory J, et al. Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLoS One. 2013;8:e55089.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9:677–9.PubMedGoogle Scholar
  25. 25.
    Borg CL, Wolski KM, Gibbs GM, et al. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update. 2010;16:205–24.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Tamowski S, Aston KI, Carrell DT. The use of transgenic mouse models in the study of male infertility. Syst Biol Reprod Med. 2010;56:260–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Yan W. Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol. 2009;306:24–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stouffs K, Vandermaelen D, Tournaye H, et al. Mutation analysis of three genes in patients with maturation arrest of spermatogenesis and couples with recurrent miscarriages. Reprod Biomed Online. 2011;22:65–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Dam AH, Koscinski I, Kremer JA, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81:813–20.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Liu G, Shi QW, Lu GX. A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl. 2010;12:556–60.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Jensen TK, Jacobsen R, Christensen K, et al. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol. 2009;170:559–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Salonia A, Matloob R, Gallina A, et al. Are infertile men less healthy than fertile men? Results of a prospective case–control survey. Eur Urol. 2009;56:1025–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36:1224–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69:3613–34.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anastasia M. Fedick
    • 1
    • 2
  • Kyle Eckert
    • 2
  • Katharine Thompson
    • 2
  • Eric J. Forman
    • 2
    • 3
  • Batsal Devkota
    • 2
  • Nathan R. Treff
    • 1
    • 2
    • 3
  • Deanne Taylor
    • 1
    • 2
    • 3
  • Richard T. ScottJr
    • 1
    • 2
    • 3
  1. 1.Department of Microbiology and Molecular GeneticsUMDNJ-Robert Wood Johnson Medical SchoolPiscatawayUSA
  2. 2.Reproductive Medicine Associates of New JerseyBasking RidgeUSA
  3. 3.Department of Obstetrics, Gynecology, and Reproductive SciencesRutgers Robert-Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations