Skip to main content
Log in

Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Sperm DNA damage is common in infertile men and is associated with poor semen parameters but the impact of an isolated sperm abnormality on sperm DNA damage has not been studied.

Objective

To evaluate sperm DNA damage in a large cohort of infertile men with isolated sperm defects.

Design, setting and participants

Retrospective study of 1084 consecutive, non-azoospermic infertile men with an isolated sperm defect: isolated oligozoospermia (iOligo), isolated asthenozoospermia (iAstheno) or isolated teratozoospermia (iTerato).

Outcome measurements and statistical analysis

We examined and compared clinical parameters, conventional semen parameters and %sperm DNA fragmentation (%SDF, assessed by flow cytometry-based Terminal deoxynucleotidyl transferase-mediated dUTP Nick End-Labeling assay) in the three groups of men.

Results and limitations

The mean (±SD) %SDF was significantly higher in the iAstheno compared to the iOligo and iTerato groups (25.0 ± 14.0 vs. 19.2 ± 11.6 and 20.7 ± 12.1 %, respectively, P < 0.0001). Similarly, the proportion of men with high %SDF (>30 %) was significantly higher in the iAstheno compared to the iOligo and iTerato groups (31 % vs. 18 % and 19 %, respectively, P < 0.0001). In the group of 713 men with iAstheno, %SDF was positively correlated with paternal age (r = 0.20, P < 0.0001) and inversely correlated with %progressive motility (r = −0.18, P < 0.0001). In the subset of 218 men with iTerato, %SDF was also positively correlated with paternal age (r = 0.15, P = 0.018) and inversely correlated with %progressive motility (r = −0.26, P = 0.0001).

Conclusions

In this large cohort of infertile men with isolated sperm abnormalities, we have found that the sperm DNA fragmentation level is highest in the men with sperm motility defects and that 31 % of these men have high levels of sperm DNA fragmentation. The data indicate that poor motility is the sperm parameter abnormality most closely related to sperm DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandes M, Hamilton CJ, de Bruin JP, Nelen WL, Kremer JA. The relative contribution of IVF to the total ongoing pregnancy rate in a subfertile cohort. Hum Reprod. 2010;25:118–26.

    Article  CAS  PubMed  Google Scholar 

  2. Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129:505–14.

    Article  CAS  PubMed  Google Scholar 

  3. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  CAS  PubMed  Google Scholar 

  4. Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl. 2002;23:717–23.

    PubMed  Google Scholar 

  5. Fossa SD, De Angelis P, Kraggerud SM, Evenson D, Theodorsen L, Clausen OP. Prediction of post treatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry. 1997;30:192–6.

    Article  CAS  PubMed  Google Scholar 

  6. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23:1044–52.

    Article  PubMed  Google Scholar 

  7. Potts RJ, Newbury CJ, Smith G, Notarianni LJ, Jefferies TM. Sperm chromatin damage associated with male smoking. Mutat Res. 1999;423:103–11.

    Article  CAS  PubMed  Google Scholar 

  8. Sailer BL, Sarkar LJ, Bjordahl JA, Jost LK, Evenson DP. Effects of heat stress on mouse testicular cells and sperm chromatin structure. J Androl. 1997;18:294–301.

    CAS  PubMed  Google Scholar 

  9. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas Jr AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  10. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29.

    Article  CAS  PubMed  Google Scholar 

  11. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.

    Article  CAS  PubMed  Google Scholar 

  12. Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med. 2008;54:3–10.

    Article  CAS  PubMed  Google Scholar 

  13. Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online. 2003;7:428–32.

    Article  PubMed  Google Scholar 

  14. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27:890–8.

    Article  CAS  PubMed  Google Scholar 

  15. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26:741–8.

    Article  CAS  PubMed  Google Scholar 

  16. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 2001;28:82–6.

    CAS  PubMed  Google Scholar 

  17. Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online. 2007;14:746–57.

    Article  CAS  PubMed  Google Scholar 

  18. Gregoire MC, Massonneau J, Simard O, Gouraud A, Brazeau MA, Arguin M, et al. Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod. 2013;19:495–9.

    Article  CAS  PubMed  Google Scholar 

  19. De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81:517–24.

    Article  PubMed  Google Scholar 

  20. Moskovtsev SI, Willis J, White J, Mullen JB. Sperm DNA damage: correlation to severity of semen abnormalities. Urology. 2009;74:789–93.

    Article  PubMed  Google Scholar 

  21. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60:1069–72.

    Article  PubMed  Google Scholar 

  22. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.

    Article  PubMed  Google Scholar 

  24. Jouannet P, Ducot B, Feneux D, Spira A. Male factors and the likelihood of pregnancy in infertile couples. I. Study of sperm characteristics. Int J Androl. 1988;11:379–94.

    Article  CAS  PubMed  Google Scholar 

  25. Auger J, Eustache F, David G. Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée. Andrologie. 2000;10:358–73.

    Article  Google Scholar 

  26. Auger J, Eustache F, Andersen AG, Irvine DS, Jorgensen N, Skakkebaek NE, et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum Reprod. 2001;16:2710–7.

    Article  CAS  PubMed  Google Scholar 

  27. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh Jr ES, Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79:16–22.

    Article  PubMed  Google Scholar 

  28. Cohen-Bacrie P, Belloc S, Menezo YJ, Clement P, Hamidi J, Benkhalifa M. Correlation between DNA damage and sperm parameters: a prospective study of 1,633 patients. Fertil Steril. 2009;91:1801–5.

    Article  PubMed  Google Scholar 

  29. Giwercman A, Richthoff J, Hjollund H, Bonde JP, Jepson K, Frohm B, et al. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril. 2003;80:1404–12.

    Article  PubMed  Google Scholar 

  30. Erenpreiss J, Elzanaty S, Giwercman A. Sperm DNA damage in men from infertile couples. Asian J Androl. 2008;10(5):786–90.

    Article  PubMed  Google Scholar 

  31. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.

    CAS  PubMed  Google Scholar 

  32. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16:2160–5.

    Article  CAS  PubMed  Google Scholar 

  33. Chi HJ, Chung DY, Choi SY, Kim JH, Kim GY, Lee JS, et al. Integrity of human sperm DNA assessed by the neutral comet assay and its relationship to semen parameters and clinical outcomes for the IVF-ET program. Clin Exp Reprod Med. 2011;38:10–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Oliveira JB, Massaro FC, Baruffi RL, Mauri AL, Petersen CG, Silva LF, et al. Correlation between semen analysis by motile sperm organelle morphology examination and sperm DNA damage. Fertil Steril. 2010;94:1937–40.

    Article  CAS  PubMed  Google Scholar 

  35. Varghese AC, Bragais FM, Mukhopadhyay D, Kundu S, Pal M, Bhattacharyya AK, et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009;41:207–15.

    Article  CAS  PubMed  Google Scholar 

  36. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A. 2000;97:4683–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zini A, Nam RK, Mak V, Phang D, Jarvi K. Influence of initial semen quality on the integrity of human sperm DNA following semen processing. Fertil Steril. 2000;74:824–7.

    Article  CAS  PubMed  Google Scholar 

  38. Said TM, Agarwal A, Sharma RK, Thomas Jr AJ, Sikka SC. Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril. 2005;83:95–103.

    Article  CAS  PubMed  Google Scholar 

  39. Muratori M, Piomboni P, Baldi E, Filimberti E, Pecchioli P, Moretti E, et al. Functional and ultrastructural features of DNA-fragmented human sperm. J Androl. 2000;21:903–12.

    CAS  PubMed  Google Scholar 

  40. Yang MH, Schaich KM. Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radic Biol Med. 1996;20:225–36.

    Article  CAS  PubMed  Google Scholar 

  41. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    Article  CAS  PubMed  Google Scholar 

  42. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13:368–78.

    PubMed  Google Scholar 

  43. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41.

    Article  CAS  PubMed  Google Scholar 

  44. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14:367–81.

    Article  CAS  PubMed  Google Scholar 

  45. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.

    Article  CAS  PubMed  Google Scholar 

  46. Brinkworth MH, Schmid TE. Effect of age on testicular germ cell apoptosis and sperm aneuploidy in MF-1 mice. Teratog Carcinog Mutagen. 2003;Suppl 2:103–9.

    Article  CAS  PubMed  Google Scholar 

  47. Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85:496–9.

    Article  CAS  PubMed  Google Scholar 

  48. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.

    Article  CAS  PubMed  Google Scholar 

  49. Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80:1420–30.

    Article  PubMed  Google Scholar 

  50. Nijs M, De Jonge C, Cox A, Janssen M, Bosmans E, Ombelet W. Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology. Andrologia. 2011;43:174–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.

    Article  Google Scholar 

  53. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33:e221–7.

    Article  PubMed  Google Scholar 

  54. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    Article  PubMed  Google Scholar 

  55. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.

    Article  PubMed  Google Scholar 

  56. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    Article  CAS  PubMed  Google Scholar 

  57. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23:2663–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bungum M, Bungum L, Lynch KF, Wedlund L, Humaidan P, Giwercman A. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. Int J Androl. 2012;35:485–90.

    Article  CAS  PubMed  Google Scholar 

  59. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, Sanchez-Martin M, Ramirez MA, Pericuesta E, et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  CAS  PubMed  Google Scholar 

  60. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A. 2006;103:9601–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Varshini J, Srinag BS, Kalthur G, Krishnamurthy H, Kumar P, Rao SB, et al. Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia. 2012;44:642–9.

    Article  PubMed  Google Scholar 

  62. Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91:1077–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Zini.

Additional information

Capsule In a large retrospective study, we have found that men with isolated asthenozoospermia have significantly higher sperm DNA damage than men with isolated oligozoospermia or isolated teratozoospermia. The data indicate that sperm DNA damage is most closely related to sperm motility defects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belloc, S., Benkhalifa, M., Cohen-Bacrie, M. et al. Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation. J Assist Reprod Genet 31, 527–532 (2014). https://doi.org/10.1007/s10815-014-0194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0194-3

Keywords

Navigation