Skip to main content
Log in

Identification of a novel m.9588G > A missense mutation in the mitochondrial COIII gene in asthenozoospermic Tunisian infertile men

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose:

Infertility affects 10–15 % of the population, of which, approximately 40 % is due to male etiology consisting primarily of low sperm count (oligozoospermia) and/or abnormal sperm motility (asthenozoospermia). It has been demonstrated that mtDNA base substitutions can greatly influence semen quality.

Methods:

In the present study we performed a systematic sequence analysis of the mitochondrial cytochrome oxidase III (COIII) gene in 31 asthenozoospermic infertile men in comparaison to normozoospermic infertile men (n=33) and fertile men (n=150) from Tunisian population.

Results:

A novel m.9588G>A mutation was found in the mtDNA sperm’s in all asthenozoospermic patients and was absent in the normozoospermic and in fertile men. The m.9588G>A mutation substitutes a highly conserved Glutamate at position 128 to Lysine. In addition, PolyPhen-2 analysis predicted that this variant is “probably damaging”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Følgero T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8:1863–8.

    PubMed  Google Scholar 

  2. Wallace DC. Mitochondrial DNA, variation in human evolution, degenerative disease, and aging. Am J Hum Genet. 1995;57:201–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A. 1974;71:2777–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fukunaga M, Yielding K. Fate during cell growth of yeast mitochondrial and nuclear DNA after photolytic attachment of the monoazide analog of ethidium bromide. Biochem Biophys Res Commun. 1979;90:582–6.

    Article  CAS  PubMed  Google Scholar 

  5. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988;85:6465–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nagley P, Zhang C, Martinus RD, Vaillant F, Linnane AW. Mitochondrial DNA mutation and human aging: molecular biology, bioenergetics, and redox therapy. In: DiMauro 1993

  7. Johns DR. Mitochondrial DNA, and disease. N Engl J Med. 1995;333:638–44.

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell JA, Nelson L, Hafez E. Motility of spermatozoa. In: Hafez ESE, editor. Human semen and fertility regulation in men. St. Louis: C. V. Mosby; 1976. p. 83–106.

    Google Scholar 

  9. Kao SH, Chao HT, Wei YH. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995;52:729–36.

    Article  CAS  PubMed  Google Scholar 

  10. Frank SA, Hurst LD. Mitochondria and male disease. Nature. Enriquez: Guan MX; 1996. p. 224–383.

  11. St. John JC, Cooke ID, Barratt CL. Mitochondrial mutations and male infertility. Nat Med. 1997;3:124–5.

    Article  CAS  PubMed  Google Scholar 

  12. Zeviani M, Antozzi C. Mitochondrial disorders. Mol Hum Reprod. 1997;3:133–48.

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Pesini E, Lapena A, Diez-Sanchez C, Perez-Martos A, Enriquez J, Diaz M, et al. Human mitochondrial DNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000;67:682–96 (in this issue).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zamboni L. Physiology and pathophysiology of the human spermatozoon: the role of electron microscopy. J Electron Microscopy Technique. 1991;17:412–36.

    Article  CAS  Google Scholar 

  15. Oates R. Immotile cilia syndromes. Paper presented at a conference of the American Society of Reproductive Medicine: Male Reproduction—Basic, Genetic, and Clinical Information for the Next Millennium, San Francisco, 1998; October 3–4.

  16. Folgero T, Bertheussen K, Lindal S, Tobergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8:1863–8.

    CAS  PubMed  Google Scholar 

  17. Lestienne P, Reynier P, Chretien MF, Penisson-Besnier I, Malthièry Y, Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3:811–4.

    Article  CAS  PubMed  Google Scholar 

  18. Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod. 1998;4:657–66.

    Article  CAS  PubMed  Google Scholar 

  19. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical interaction. 3rd ed. Cambridge, United Kingdom: Cambridge University Press; 1992.

    Google Scholar 

  20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pereira L, Goncalves J, Bandelt HJ. Mutation C11994T in the mitochondrial ND4 gene is not a cause of low sperm motility in Portugal. Fertil Steril. 2008;89:738–41.

    Article  CAS  PubMed  Google Scholar 

  22. Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8:719–21.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar R, Venkatesh S, Kumar M, Tanwar M, Shamsi MB, Kumar R. et al. Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic (OA) infertile men. Indian J Biochem Biophys. (2009) (in press).

  24. Thangaraj K, Joshi MB, Reddy AG, Rasalkar AA, Singh L. Sperm mitochondrial mutations as a cause of low sperm motility. J Androl. 2003;24:388–92.

    PubMed  Google Scholar 

  25. Güney AI, Javadova D, Kırac D, Ulucan K, Koc G, Ergec D, et al. Detection of Y chromosome microdeletions and mitochondrial DNA mutations in male infertility patients. GRM. 2012;1525:1676–5680.

    Google Scholar 

Download references

Acknowledgments

We thank the patient and their family for their cooperation in the present study. This work was supported by The Ministry of the Higher Education and the Scientific Research in Tunisia.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwar Baklouti-Gargouri.

Additional information

Capsule

A systematic sequence analysis of the mitochondrial (COIII) gene have been studied in 64 Tunisian infertile men in order to assess the incidence of mtDNA base substitutions; that can greatly influence semen quality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baklouti-Gargouri, S., Ghorbel, M., Ben Mahmoud, A. et al. Identification of a novel m.9588G > A missense mutation in the mitochondrial COIII gene in asthenozoospermic Tunisian infertile men. J Assist Reprod Genet 31, 595–600 (2014). https://doi.org/10.1007/s10815-014-0187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0187-2

Keywords

Navigation