Skip to main content
Log in

Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

This study evaluated the protective effect of beta-carotene (BC) on titanium oxide nanoparticle (TNP) induced spermatogenesis defects in mice.

Materials and methods

Thirty-two NMRI mice were randomly divided into four groups. BC group received 10 mg/kg of BC for 35 days. TNP group received 300 mg/kg TNP for 35 days. TNP+BC group initially received 10 mg/kg BC for 10 days and was followed by concomitant administration of 300 mg/kg TNP for 35 days. Control group received only normal saline for 35 days. Epididymal sperm parameters, testicular histopathology, spermatogenesis assessments and testosterone assay were performed for evaluation of the TNP and BC effects on testis.

Results

Serum testosterone levels were markedly decreased in TNP-intoxicated mice. Epididymal sperm parameters including sperm number, motility and percentage of abnormality were significantly changed in TNP-intoxicated mice (p < 0.01). Histopathological criteria such as epithelial vacuolization, sloughing of germ cells and detachment were significantly increased in TNP-intoxicated mice (p < 0.001). BC+TNP treatment significantly prevented these changes (p < 0.05). BC also significantly elevates testosterone levels in BC+TNP group compared to TNP-treated mice (p < 0.01).

Discussion and conclusion

The results of this study demonstrated that BC improved the spermatogenesis defects in TNP-treated mice. BC had a potent protective effect against the testicular toxicity and might be clinically useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franca LR, Ghosh S, Ye SJ, Russell LD. Surface and surface to volume relationships of the Sertoli cells during the cycle of the seminiferous epithelium in the rat. Biol Reprod. 1993;49(6):1215–28.

    Article  PubMed  Google Scholar 

  2. Boekelheide K, Fleming SL, Johnson KJ, Patel SR, Schoenfeld HA. Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Exp Biol Med. 2000;225(2):105–15.

    Article  CAS  Google Scholar 

  3. Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev. 2002;82(4):825–74.

    CAS  PubMed  Google Scholar 

  4. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci. 2010;116(2):577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In Vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–92.

    Article  CAS  PubMed  Google Scholar 

  7. Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521–31.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther. 2003;3(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher J, Egerton T, Kirk-Othmer. Encyclopedia of chemical technology. New York: Wiley; 2001.

    Google Scholar 

  10. Kaida T, Kobayashi K, Adachi M, Suzuki F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci. 2004;55(2):219–20.

    PubMed  Google Scholar 

  11. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171(3):99–110.

    Article  CAS  PubMed  Google Scholar 

  13. Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, et al. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials. 2010;31(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  14. Martín JF, Gudiña E, Barredo JL. Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Factories. 2008;7:3.

    Article  Google Scholar 

  15. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, Esquivel P, et al. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Br J Nutr. 2013;12:1–9.

    Article  Google Scholar 

  16. Krinsky NI. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;7(6):617–35.

    Article  CAS  PubMed  Google Scholar 

  17. Salvadori DM, Ribeiro LR, Xiao Y, Boei JJ, Natarajan AT. Radioprotection of beta-carotene evaluated on mouse somatic and germ cells. Mutat Res. 1996;356(2):163–70.

    Article  PubMed  Google Scholar 

  18. Gopal K, Nagarajan P, Jedy J, Raj AT, Gnanaselvi SK, Jahan P, et al. β-carotene attenuates angiotensin II-induced aortic aneurysm by alleviating macrophage recruitment in Apoe-/- mice. PLoS One. 2013;8(6):e67098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sayyah M, Yousefi-Pour M, Narenjkar J. Anti-epileptogenic effect of beta-carotene and vitamin A in pentylenetetrazole-kindling model of epilepsy in mice. Epilepsy Res. 2005;63(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  20. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HB. Role of α-tocopherol and β-carotene in ameliorating the fenvalerate-induced changes in oxidative stress, hemato-biochemical parameters, and semen quality of male rats. J Environ Sci Health B. 2004;39(3):443–59.

    Article  CAS  PubMed  Google Scholar 

  21. Vardi N, Parlakpinar H, Ates B, Cetin A, Otlu A. Antiapoptotic and antioxidant effects of b-carotene against methotrexate-induced testicular injury. Fertil Steril. 2009;92(6):2028–33.

    Article  CAS  PubMed  Google Scholar 

  22. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol. 2004;42(10):1563–71.

    Article  CAS  PubMed  Google Scholar 

  23. Almbro M, Dowling DK, Simmons LW. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol Lett. 2011;14(9):891–5.

    Article  PubMed  Google Scholar 

  24. Hess RA, Chen PP. Computer of germ cells in the cycle of the seminiferous epithelium and prediction of changes in the cycle duration in animals commonly used in reproductive biology and toxicology. J Androl. 1992;13:185–90.

    CAS  PubMed  Google Scholar 

  25. Schmid TE, Attia S, Baumgartner A, Nuesse M, Adler ID. Effect of chemicals on the duration of male meiosis in mice detected with laser scanning cytometry. Mutagenesis. 2001;16(4):339–43.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, et al. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One. 2013;8(8):e70618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Matos HR, Marques SA, Gomes OF, Silva AA, Heinmann JC, Mascio PD, et al. Lycopene and β-carotene protect in vivo iron-induced oxidative stress damage in rat prostate. Braz J Med Biol Res. 2006;39(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  28. Lyama T, Takasuga A, Azuma M. Beta-carotene accumulation in mouse tissues and a protective role against lipid peroxidation. Int J Vitam Nutr Res. 1996;66(4):301–5.

    Google Scholar 

  29. Habertand R, Picon R. Control of testicular steroidogenesis in foetal rat: effect of decapitation on testosterone and plasma luteinizing hormone-like activity. Acta Endocrinol. 1982;99(3):466–73.

    Google Scholar 

  30. Jadhav MV, Sharma RC, Rathore Mansee, Gangawane AK. Effect of Cinnamomum camphora on human sperm motility and sperm viability. J Clin Res Lett. 2010;1(1):01–10.

    Google Scholar 

  31. Gromadzka-Ostrowskaa J, Dziendzikowskaa K, Lankoffb A, Dobrzyńska M, Instanes C, Brunborg G, et al. Silver nanoparticles effects on epididymal spermin rats. Toxicol Lett. 2012;214(3):251–8.

    Article  Google Scholar 

  32. Talebi AR, Khorsandi L, Moridian M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet. 2013;30(9):1203–9.

    Article  PubMed  Google Scholar 

  33. Khani B, Rabbani Bidgoli S, Moattar F, Hassani H. Effect of sesame on sperm quality of infertile men. J Res Med Sci. 2013;18(3):184–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hajshafiha M, Ghareaghaji R, Salemi S, Sadegh-Asadi N, Sadeghi-Bazargani H. Association of body mass index with some fertility markers among male partners of infertile couples. Int J Gen Med. 2013;6:447–51.

    PubMed Central  PubMed  Google Scholar 

  35. Oatley JM, Tibary A, de-Avila DM, Wheaton JE, McLean DJ, Reeves JJ. Changes in spermatogenesis and endocrine function in the ram testis due to irradiation and active immunization against luteinizing hormone-releasing hormone. J Anim Sci. 2005;83(3):604–12.

    CAS  PubMed  Google Scholar 

  36. Orazizadeh M, Khorsandi LS, Hashemitabar M. Toxic effects of dexamethasone on mouse testicular germ cells. Andrologia. 2010;42(4):247–53.

    Article  CAS  PubMed  Google Scholar 

  37. Johnsen SG. Testicular biopsy score count: a method for registration of spermatogenesis in human testis. Hormones. 1970;1:2–25.

    Article  CAS  PubMed  Google Scholar 

  38. Khorsandi L, Mirhoseini M, Mohamadpour M. Toxic effects of Carthamus tinctorius L (Safflower) extract on mouse spermatogenesis. J Assist Reprod Genet. 2012;29(5):457–61.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hooley RP, Paterson M, Brown P, Kerr K, Saunders PTK. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium. Reproduction. 2009;137(2):361–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Creasy DM, Beech LM, Gray TJ, Butler WH. The ultrastructural effects of di-n-pentyl phthalate on the testis of the mature rat. Exp Mol Pathol. 1987;46:357–71.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh S, Sinha-Hikim AP, Russell LD. Further observations of stage-specific effects seen after short-term hypophysectomy in the rat. Tissue Cell. 1991;23:613–30.

    Article  CAS  PubMed  Google Scholar 

  42. Paul C, Murray A, Spears N, Saunders P. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136:73–84.

    Article  CAS  PubMed  Google Scholar 

  43. Kerr JB, Savage GN, Millar M, Sharpe RM. Response of the seminiferous epithelium of the rat testis to withdrawal of androgen: evidence for direct effect upon intercellular spaces associated with Sertoli cell junctional complexes. Cell Tissue Res. 1993;274:153–61.

    Article  CAS  PubMed  Google Scholar 

  44. Hess RA, Nakai M. Histopathology of the male reproductive system induced by the fungicide benomyl. Histol Histopathol. 2000;15(1):207–24.

    CAS  PubMed  Google Scholar 

  45. Guo LL, Liu XH, Qin DX, Gao L, Zhang HM, Liu JY, et al. Effects of nanosized titanium dioxide on the reproductive system of male mice. Zhonghua Nan Ke Xue. 2009;15(6):517–22.

    CAS  PubMed  Google Scholar 

  46. Khaki A, Heidari M, Ghaffari Novin M, Khaki AA. Adverse effects of ciprofloxacin on testis apoptosis and sperm parameters in rats. Iran J Reprod Med. 2008;6(2):71–6.

    Google Scholar 

  47. Working PK, Chellman GJ. The testis, spermatogenesis and the excurrent duct system. In: Scialli AR, Zinaman MJ, editors. Reproductive toxicology and infertility. New York: McGraw Hill; 1993. pp. 55–76.

  48. Bitman J, Cecil HC. Estrogenic activity of DDT analoges and polychlorinated biphenyls. J Agric Food Chem. 1970;18:1108–12.

    Article  CAS  PubMed  Google Scholar 

  49. Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki K, Nihei Y, et al. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol in Vitro. 2008;22(8):1825–31.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida S, Sagai M, Oshio S, Umeda T, Ihara T, Sugamata M, et al. Exposure to diesel exhaust affects the male reproductive system of mice. Int J Androl. 1999;22(5):307–15.

    Article  CAS  PubMed  Google Scholar 

  51. Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol. 2008;109(3–5):323–30.

    Article  CAS  PubMed  Google Scholar 

  52. Ahotupa M, Huhtaniemi I. Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally criptorchid rat testis. Biol Reprod. 1992;46:1114–8.

    Article  CAS  PubMed  Google Scholar 

  53. Peters A, Denk AG, Delhey K, Kempenaers B. Carotenoid-based bill colour as an indicator of immuno-competence and sperm performance in male mallards. J Evol Biol. 2004;17(5):1111–20.

    Article  CAS  PubMed  Google Scholar 

  54. Matos HR, Marques SA, Gomes OF, Silva AA, Heinmann JC, Mascio PD. Lycopene and b-carotene protect in vivo iron-induced oxidative stress damage in rat prostate. Braz J Med Biol Res. 2006;39(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  55. el-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Role of alpha-tocopherol and beta-carotene in ameliorating the fenvalerate-induced changes in oxidative stress, hemato-biochemical parameters, and semen quality of male rats. J Environ Sci Health B. 2004;39(3):443–59.

    Article  CAS  PubMed  Google Scholar 

  56. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12.

    CAS  PubMed  Google Scholar 

  57. Peng HC, Chen JR, Chen YL, Yang SC, Yang SS. Beta-Carotene exhibits antioxidant and anti-apoptotic properties to prevent ethanol-induced cytotoxicity in isolated rat hepatocytes. Phytother Res. 2010;24(2):S183–9.

    Article  PubMed  Google Scholar 

  58. Lin C, Yon JM, Jung AY, Lee JG, Jung KY, Lee BJ, et al. Antiteratogenic effects of β-carotene in cultured mouse embryos exposed to nicotine. Evid Based Complement Alternat Med. 2013;2013:1–12.

    Google Scholar 

Download references

Acknowledgments

This paper was issue from thesis of Erfan Daneshi and was supported by a Grant (CMRC-84) from the research council of the Ahvaz Jundishapur University of Medical Sciences in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layasadat Khorsandi.

Additional information

Capsule Beta-carotene has an ameliorating effect against titanium oxide nanoparticlesinduced testicular germ cell damage in mice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orazizadeh, M., Khorsandi, L., Absalan, F. et al. Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J Assist Reprod Genet 31, 561–568 (2014). https://doi.org/10.1007/s10815-014-0184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0184-5

Keywords

Navigation