Skip to main content

Analysis of telomere length in couples experiencing idiopathic recurrent pregnancy loss

Abstract

Purpose

Telomere length plays a significant role in various disorders; however, its role in idiopathic recurrent pregnancy loss (iRPL) is not known. The objective of this study was to assess telomere length in peripheral blood leukocytes in couples experiencing unexplained recurrent pregnancy loss (iRPL).

Methods

The study included 25 couples experiencing iRPL and 20 controls. The mean relative telomere length was measured by quantitative Real Time PCR (Q-PCR) based assay, which measures the average ratio of telomere repeat copy number to a single copy gene (36B4) copy number (T/S ratio) in each sample.

Results

The relative leukocyte mean telomere length (T/S) in both men and women from iRPL group was significantly lower (p < 0.05) when compared to controls. A significant (P < 0.05) negative correlation was found between age and leukocyte telomere length (T/S ratio). Among the sperm parameters seminal volume was found to be negatively (r = −0.4679) associated with the telomere T/S ratio. The DNA fragmentation index of sperm showed positive correlation (r = 0.4744) with telomere length. In this preliminary study, we found that shorter telomere length in both men and women may be associated with early pregnancy loss.

Conclusion

In conclusion, shorter telomere length in both male and female partners appears to play a role in the idiopathic recurrent pregnancy loss. Loss of telomeric DNA due to oxidative stress needs further analysis. Analysis of telomere length in germ cells are needed to further substantiate the findings of this study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Jaslow CR, Carney JL, Kutteh WH. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil Steril. 2010;93(4):1234–43. doi:10.1016/j.fertnstert.2009.01.166.

    PubMed  Article  CAS  Google Scholar 

  2. Venkatesh S, Thilagavathi J, Kumar K, Deka D, Talwar P, Dada R. Cytogenetic, Y chromosome microdeletion, sperm chromatin and oxidative stress analysis in male partners of couples experiencing recurrent spontaneous abortions. Arch Gynecol Obstet. 2011;284(6):1577–84. doi:10.1007/s00404-011-1990-y.

    PubMed  Article  CAS  Google Scholar 

  3. Tummers P, De Sutter P, Dhont M. Risk of spontaneous abortion in singleton and twin pregnancies after IVF/ICSI. Hum Reprod. 2003;18(8):1720–3.

    PubMed  Article  Google Scholar 

  4. Saccone S, De Sario A, Della Valle G, Bernardi G. The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci U S A. 1992;89(11):4913–7.

    PubMed  Article  CAS  Google Scholar 

  5. Baird DM. New developments in telomere length analysis. Exp Gerontol. 2005;40(5):363–8. doi:10.1016/j.exger.2005.02.008.

    PubMed  Article  CAS  Google Scholar 

  6. Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL. Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A. 2004;101(17):6496–501. doi:10.1073/pnas.0400755101.

    PubMed  Article  CAS  Google Scholar 

  7. Murnane JP. Telomeres and chromosome instability. DNA Repair (Amst). 2006;5(9–10):1082–92. doi:10.1016/j.dnarep.2006.05.030.

    Article  CAS  Google Scholar 

  8. Krizhanovsky V, Xue W, Zender L, Yon M, Hernando E, Lowe SW. Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb Symp Quant Biol. 2008;73:513–22. doi:10.1101/sqb.2008.73.048.

    PubMed  Article  CAS  Google Scholar 

  9. Liu L, Blasco M, Trimarchi J, Keefe D. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 2002;249(1):74–84.

    PubMed  Article  CAS  Google Scholar 

  10. Keefe DL, Franco S, Liu L, Trimarchi J, Cao B, Weitzen S, et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women--toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol. 2005;192(4):1256–60. doi:10.1016/j.ajog.2005.01.036. discussion 1260–1251.

    PubMed  Article  CAS  Google Scholar 

  11. Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun. 2000;279(1):213–8. doi:10.1006/bbrc.2000.3917.

    PubMed  Article  CAS  Google Scholar 

  12. Rodriguez S, Goyanes V, Segrelles E, Blasco M, Gosalvez J, Fernandez JL. Critically short telomeres are associated with sperm DNA fragmentation. Fertil Steril. 2005;84(4):843–5. doi:10.1016/j.fertnstert.2005.05.014.

    PubMed  Article  CAS  Google Scholar 

  13. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.

    PubMed  Google Scholar 

  14. Scherthan H, Weich S, Schwegler H, Heyting C, Harle M, Cremer T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol. 1996;134(5):1109–25.

    PubMed  Article  CAS  Google Scholar 

  15. Barlow AL, Hulten MA. Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I human spermatocytes. Chromosome Res. 1996;4(8):562–73.

    PubMed  Article  CAS  Google Scholar 

  16. Keefe DL, Liu L, Marquard K. Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci. 2007;64(2):139–43. doi:10.1007/s00018-006-6466-z.

    PubMed  Article  CAS  Google Scholar 

  17. WHO (ed) (1999) WHO laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction., 4 edn,

  18. Venkatesh S, Singh A, Shamsi MB, Thilagavathi J, Kumar R, Mitra DK, et al. Clinical significance of sperm DNA damage threshold value in the assessment of male infertility. Reprod Sci. 2011;18(10):1005–13. doi:10.1177/1933719111401662.

    PubMed  Article  CAS  Google Scholar 

  19. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.

    PubMed  Article  Google Scholar 

  20. Salpea KD, Humphries SE. Telomere length in atherosclerosis and diabetes. Atherosclerosis. 2010;209(1):35–8. doi:10.1016/j.atherosclerosis.2009.12.021.

    PubMed  Article  CAS  Google Scholar 

  21. Aviv A, Aviv H. Reflections on telomeres, growth, aging, and essential hypertension. Hypertension. 1997;29(5):1067–72.

    PubMed  Article  CAS  Google Scholar 

  22. Aviv A. Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J Mol Med (Berl). 2002;80(11):689–95. doi:10.1007/s00109-002-0377-8.

    Article  CAS  Google Scholar 

  23. Grodstein F, van Oijen M, Irizarry MC, Rosas HD, Hyman BT, Growdon JH, et al. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses’ health study. PLoS One. 2008;3(2):e1590. doi:10.1371/journal.pone.0001590.

    PubMed  Article  Google Scholar 

  24. Ilmonen P, Kotrschal A, Penn DJ. Telomere attrition due to infection. PLoS One. 2008;3(5):e2143. doi:10.1371/journal.pone.0002143.

    PubMed  Article  Google Scholar 

  25. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.

    Article  Google Scholar 

  26. Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30. doi:10.1111/j.1474-9726.2006.00224.x.

    PubMed  Article  CAS  Google Scholar 

  27. Raynaud CM, Jang SJ, Nuciforo P, Lantuejoul S, Brambilla E, Mounier N, et al. Telomere shortening is correlated with the DNA damage response and telomeric protein down-regulation in colorectal preneoplastic lesions. Ann Oncol. 2008;19(11):1875–81. doi:10.1093/annonc/mdn405.

    PubMed  Article  CAS  Google Scholar 

  28. Kananen L, Surakka I, Pirkola S, Suvisaari J, Lonnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010;5(5):e10826. doi:10.1371/journal.pone.0010826.

    PubMed  Article  Google Scholar 

  29. Zhu H, Belcher M, van der Harst P. Healthy aging and disease: role for telomere biology? Clin Sci (Lond). 2011;120(10):427–40. doi:10.1042/CS20100385.

    Article  Google Scholar 

  30. Akamine R, Yamamoto T, Watanabe M, Yamazaki N, Kataoka M, Ishikawa M, et al. Usefulness of the 5′ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species. J Biochem Biophys Methods. 2007;70(3):481–6. doi:10.1016/j.jbbm.2006.11.008.

    PubMed  Article  CAS  Google Scholar 

  31. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346(6287):866–8. doi:10.1038/346866a0.

    PubMed  Article  CAS  Google Scholar 

  32. Keefe DL, Marquard K, Liu L. The telomere theory of reproductive senescence in women. Curr Opin Obstet Gynecol. 2006;18(3):280–5. doi:10.1097/01.gco.0000193019.05686.49.

    PubMed  Article  Google Scholar 

  33. Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, et al. Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet. 2010;6(5):e1000951. doi:10.1371/journal.pgen.1000951.

    PubMed  Article  Google Scholar 

  34. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21(4):532–40. doi:10.1038/sj.onc.1205080.

    PubMed  Article  Google Scholar 

  35. Vogt S, Iking-Konert C, Hug F, Andrassy K, Hansch GM. Shortening of telomeres: Evidence for replicative senescence of T cells derived from patients with Wegener’s granulomatosis. Kidney Int. 2003;63(6):2144–51. doi:10.1046/j.1523-1755.2003.00037.x.

    PubMed  Article  CAS  Google Scholar 

  36. Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW. Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell. 2001;12(7):2023–30.

    PubMed  CAS  Google Scholar 

  37. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107(1):67–77.

    PubMed  Article  CAS  Google Scholar 

  38. Pal L, Santoro N. Age-related decline in fertility. Endocrinol Metab Clin North Am. 2003;32(3):669–88.

    PubMed  Article  Google Scholar 

  39. Cleary-Goldman J, Malone FD, Vidaver J, Ball RH, Nyberg DA, Comstock CH, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105(5 Pt 1):983–90. doi:10.1097/01.AOG.0000158118.75532.51.

    PubMed  Article  Google Scholar 

  40. Nybo Andersen AM, Hansen KD, Andersen PK, Davey Smith G. Advanced paternal age and risk of fetal death: a cohort study. Am J Epidemiol. 2004;160(12):1214–22. doi:10.1093/aje/.

    PubMed  Article  Google Scholar 

  41. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17(6):1649–56.

    PubMed  Article  Google Scholar 

  42. Treff NR, Su J, Taylor D, Scott Jr RT. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161. doi:10.1371/journal.pgen.1002161.

    PubMed  Article  CAS  Google Scholar 

  43. Dorland M, van Montfrans JM, van Kooij RJ, Lambalk CB, te Velde ER. Normal telomere lengths in young mothers of children with Down’s syndrome. Lancet. 1998;352(9132):961–2.

    PubMed  Article  CAS  Google Scholar 

  44. Aydos SE, Elhan AH, Tukun A. Is telomere length one of the determinants of reproductive life span? Arch Gynecol Obstet. 2005;272(2):113–6. doi:10.1007/s00404-004-0690-2.

    PubMed  Article  Google Scholar 

  45. Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod. 2010;16(9):685–94. doi:10.1093/molehr/gaq048.

    PubMed  Article  CAS  Google Scholar 

  46. Lee HW, Blasco MA, Gottlieb GJ, Horner 2nd JW, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74. doi:10.1038/33345.

    PubMed  Article  CAS  Google Scholar 

  47. Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A. 1997;94(14):7423–8.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Biotechnology (DBT) (BT/PR4704/MED/12/539/2012), and Indian Council of Medical Research (ICMR) New Delhi, India for their financial support. J. Thilagavathi (ICMR) and S.S. Mishra (DBT) are S.R.F is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dada.

Additional information

Capsule

Telomeres the conserved nucleoprotein structures flanking chromosomal ends and confer chromosomal stability and genomic integrity. Telomere length determines the replicative potential of the cell. Telomere length depends on both genetic and life style factors. Oxidative and psychological stress accelerates telomere shortening. Telomere length in both male and female partners determines the telomere length of blastocyst/embryo, but shorter telomere length may impair the replicative potential of embryo and thus may be the underlying aetiology of iRPL.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thilagavathi, J., Mishra, S.S., Kumar, M. et al. Analysis of telomere length in couples experiencing idiopathic recurrent pregnancy loss. J Assist Reprod Genet 30, 793–798 (2013). https://doi.org/10.1007/s10815-013-9993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9993-1

Keywords

  • Telomere length
  • Recurrent pregnancy loss
  • Q-PCR, Sperm chromatin structure assay
  • Reactive oxygen species