Astaxanthin ameliorates heat stress-induced impairment of blastocyst development In Vitro: –astaxanthin colocalization with and action on mitochondria–

  • T. Kuroki
  • S. IkedaEmail author
  • T. Okada
  • T. Maoka
  • A. Kitamura
  • M. Sugimoto
  • S. Kume
Embryo Biology



The effects of astaxanthin (Ax) on the in vitro development of bovine embryos cultured under heat stress were investigated in combination with the assessment of its cellular accumulation and action on mitochondrial membrane potential (ΔΨm).


Bovine ≥8-cell embryos were collected on day 3 after in vitro fertilization and exposed to single (day 4) or repeated (day 4 and 5) heat stress (10 h/day at 40.5 °C). Ax was added into culture medium under the repeated heat stress and blastocyst development was evaluated. The cellular uptake of Ax in embryos was examined using bright-field and confocal laser-scanning microscopy, and high-performance liquid chromatography. The relationship between Ax and mitochondria localization was assessed using MitoTracker dye. The effects of Ax on ΔΨm were investigated using JC-1 dye.


Blastocyst development in the repeated heat stress treatment decreased significantly (P < 0.05) compared with those in single heat stress or normal thermal treatment. The addition of Ax into culture medium did lead to a significant recovery in blastocyst development in the repeated heat-treated group. Ax was detected in cytoplasm of embryos and observed to colocalize with mitochondria. Ax recovered ΔΨm in embryos that was decreased by the heat treatment.


Ax ameliorated the heat stress-induced impairment of blastocyst development. Our results suggest that the direct action of Ax on mitochondrial activity via cellular uptake is a mechanism of the ameliorating effects.


Preimplantation embryos Heat stress Astaxanthin Cellular uptake Mitochondria 



The authors thank the staff at the second wholesale market of Kyoto City for providing bovine ovaries. We appreciate the donation of bull semen from the Laboratory of Reproductive Biology, Kyoto University. This work was supported in part by ASKA Pharmaceutical Co., Ltd. and JSPS KAKENHI Grant Number 24658233.


  1. 1.
    Acton BM, Jurisicova A, Jurisica I, Casper RF. Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod. 2004;10(1):23–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Adjaye J, Herwig R, Brink TC, Herrmann D, Greber B, Sudheer S, et al. Conserved molecular portraits of bovine and human blastocysts as a consequence of the transition from maternal to embryonic control of gene expression. Physiol Genomics. 2007;31(2):315–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Azad MA, Kikusato M, Sudo S, Amo T, Toyomizu M. Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken. Comp Biochem Physiol A Mol Integr Physiol. 2010;157(3):266–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonilla AQ, Oliveira LJ, Ozawa M, Newsom EM, Lucy MC, Hansen PJ. Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo. Mol Cell Endocrinol. 2011;332(1–2):170–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Caserta D, Mantovani A, Marci R, Fazi A, Ciardo F, La Rocca C, et al. Environment and women’s reproductive health. Hum Reprod Update. 2011;17(3):418–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiu HY, Tsao LY, Yang RC. Heat-shock response protects peripheral blood mononuclear cells (PBMCs) from hydrogen peroxide-induced mitochondrial disturbance. Cell Stress Chaperones. 2009;14(2):207–17.PubMedCrossRefGoogle Scholar
  7. 7.
    De Rensis F, Scaramuzzi RJ. Heat stress and seasonal effects on reproduction in the dairy cow–a review. Theriogenology. 2003;60(6):1139–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Dell’Aquila ME, Ambruosi B, De Santis T, Cho YS. Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation. Fertil Steril. 2009;91(1):249–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol. 2009;20(3):346–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards JL, Hansen PJ. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol Reprod Dev. 1997;46(2):138–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Gomez E, Caamano JN, Rodriguez A, De Frutos C, Facal N, Diez C. Bovine early embryonic development and vitamin A. Reprod Domest Anim. 2006;41 Suppl 2 2:63–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Hansen PJ. To be or not to be–determinants of embryonic survival following heat shock. Theriogenology. 2007;68 Suppl 1 1:S40–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Harvey A, Gibson T, Lonergan T, Brenner C. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion. 2011;11(5):829–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46(2):185–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 2006;69(3):443–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074.PubMedCrossRefGoogle Scholar
  17. 17.
    Ikeda S, Kitagawa M, Imai H, Yamada M. The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J Reprod Dev. 2005;51(1):23–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Ikeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev. 2012;58(1):91–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Jørgensen K, Stapelfeldt H, Skibsted LH. Fluorescence of carotenoids. Effect of oxygenation and cis/trans isomerization. Chem Phys Lett. 1992;190(5):514–9.CrossRefGoogle Scholar
  20. 20.
    Jones A, Van Blerkom J, Davis P, Toledo AA. Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: implications for developmental competence. Hum Reprod. 2004;19(8):1861–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Koyama H, Ikeda S, Sugimoto M, Kume S. Effects of folic acid on the development and oxidative stress of mouse embryos exposed to heat stress. Reprod Domest Anim. 2012;47(6):921–7.Google Scholar
  22. 22.
    Leidenfrost S, Boelhauve M, Reichenbach M, Gungor T, Reichenbach HD, Sinowatz F, et al. Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One. 2011;6(7):e22121.PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez-Gatius F. Factors of a noninfectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology. 2012;77(6):1029–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma W, Yang X, Liang X. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study. Reprod Biol Endocrinol. 2012;10:68.PubMedCrossRefGoogle Scholar
  25. 25.
    Manabe E, Handa O, Naito Y, Mizushima K, Akagiri S, Adachi S, et al. Astaxanthin protects mesangial cells from hyperglycemia-induced oxidative signaling. J Cell Biochem. 2008;103(6):1925–37.PubMedCrossRefGoogle Scholar
  26. 26.
    McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil. 2000;118(1):163–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Menezo YJ, Herubel F. Mouse and bovine models for human IVF. Reprod Biomed Online. 2002;4(2):170–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Mujahid A, Akiba Y, Toyomizu M. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R690–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Nabenishi H, Takagi S, Kamata H, Nishimoto T, Morita T, Ashizawa K, et al. The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Mol Reprod Dev. 2012;79(1):31–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Namekawa T, Ikeda S, Sugimoto M, Kume S. Effects of astaxanthin-containing oil on development and stress-related gene expression of bovine embryos exposed to heat stress. Reprod Domest Anim. 2010;45(6):e387–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Negro-Vilar A. Stress and other environmental factors affecting fertility in men and women: overview. Environ Health Perspect. 1993;101 Suppl 2 2:59–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375(1):54–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Park JS, Kim HW, Mathison BD, Hayek MG, Massimino S, Reinhart GA, Chew BP. Astaxanthin uptake in domestic dogs and cats. Nutr Metab (Lond) 2010;7:52Google Scholar
  34. 34.
    Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16(8):557–69.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7(5):425–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Rivera RM, Hansen PJ. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction. 2001;121(1):107–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Roth Z, Aroyo A, Yavin S, Arav A. The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology. 2008;70(6):887–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Saeki K, Hoshi M, Leibfried-Rutledge ML, First NL. In vitro fertilization and development of bovine oocytes matured with commercially available follicle stimulating hormone. Theriogenology. 1990;34:1035–9.CrossRefGoogle Scholar
  40. 40.
    Sakatani M, Kobayashi S, Takahashi M. Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Mol Reprod Dev. 2004;67(1):77–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakatani M, Suda I, Oki T, Kobayashi S, Takahashi M. Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J Reprod Dev. 2007;53(3):605–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85(3):584–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A. 1991;88(9):3671–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Soto P, Smith LC. BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol Reprod Dev. 2009;76(7):637–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi K, Watanabe M, Takimoto T, Akiba Y. Uptake and distribution of astaxanthin in several tissues and plasma lipoproteins in male broiler chickens fed a yeast (Phaffia rhodozyma) with a high concentration of astaxanthin. Br Poult Sci. 2004;45(1):133–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963–78.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamassia M, Nuttinck F, May-Panloup P, Reynier P, Heyman Y, Charpigny G, et al. In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol Reprod. 2004;71(2):697–704.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128(3):269–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11(5):797–813.PubMedCrossRefGoogle Scholar
  50. 50.
    Van Blerkom J, Davis P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod. 2002;17(2):393–406.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilding M, Coppola G, Dale B, Di Matteo L. Mitochondria and human preimplantation embryo development. Reproduction. 2009;137(4):619–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16(5):909–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Wilding M, Fiorentino A, De Simone ML, Infante V, De Matteo L, Marino M, et al. Energy substrates, mitochondrial membrane potential and human preimplantation embryo division. Reprod Biomed Online. 2002;5(1):39–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, et al. Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem. 2010;21(5):381–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. Kuroki
    • 1
  • S. Ikeda
    • 1
    Email author
  • T. Okada
    • 2
  • T. Maoka
    • 3
  • A. Kitamura
    • 4
  • M. Sugimoto
    • 1
  • S. Kume
    • 1
  1. 1.Laboratory of Animal Physiology and Functional AnatomyGraduate School of Agriculture, Kyoto UniversityKyotoJapan
  2. 2.Animal Health DivisionASKA Pharmaceutical Co., LtdTokyoJapan
  3. 3.Division of Food Function and ChemistryResearch Institute for Production DevelopmentKyotoJapan
  4. 4.AstaReal Co., LtdTokyoJapan

Personalised recommendations