Skip to main content
Log in

Effect of micro-vibration culture system on embryo development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Micro-vibration culture system was examined to determine the effects on mouse and human embryo development and possible improvement of clinical outcomes in poor responders.

Materials and methods

The embryonic development rates and cell numbers of blastocysts were compared between a static culture group (n = 178) and a micro-vibration culture group (n = 181) in mice. The embryonic development rates and clinical results were compared between a static culture group (n = 159 cycles) and a micro-vibration culture group (n = 166 cycles) in poor responders. A micro-vibrator was set at a frequency of 42 Hz, 5 s/60 min duration for mouse and human embryo development.

Results

The embryonic development rate was significantly improved in the micro-vibration culture group in mice (p < 0.05). The cell numbers of mouse blastocysts were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). In the poor responders, the rate of high grade embryos was not significantly improved in the micro-vibration culture group on day 3. However, the optimal embryonic development rate on day 5 was improved in the micro-vibration group, and the total pregnancy rate and implantation rate were significantly higher in the micro-vibration group than in the static culture group (p < 0.05).

Conclusions

Micro-vibration culture methods have a beneficial effect on embryonic development in mouse embryos. In poor responders, the embryo development rate was improved to a limited extent under the micro-vibration culture conditions, but the clinical results were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gardner DK, Weissman A, Howles CM, Shoham Z. Textbook of assisted reproductive techiniques. In: Gardner DK, Lane M, editors. Culture systems for the human embryo. 2nd ed. London and New York: Taylor & Francis; 2004. p. 211–34.

    Google Scholar 

  2. Ben-Yosef D, Amit A, Azem F, Schwartz T, Cohen T, Mei-Raz N, et al. Prospective randomized comparison of two embryo culture systems: P1 medium by Irvine Scientific and the Cook IVF Medium. J Assist Reprod Genet. 2004;21:291–5.

    Article  PubMed  Google Scholar 

  3. Balaban B, Urman B. Comparison of two sequential media for culturing cleavage-stage embryos and blastocysts: embryo characteristics and clinical outcome. Reprod BioMedOnline. 2005;10:485–91.

    Article  Google Scholar 

  4. Aoki VW, Wilcox AL, Peterson CM, Parker-Jones K, Hatasaka HH, Gibson M, et al. Comparison of four media types during 3-day human IVF embryo culture. Reprod BioMedOnline. 2005;10:600–6.

    Article  Google Scholar 

  5. Lane M, Gardner DK. Embryo culture medium; which is the best? Best Pract Res Clin Obstet Gynecol. 2007;21:83–100.

    Article  Google Scholar 

  6. Gruber I, Klein M. Embryo culture media for human IVF: which possibilities exist? J Turk Ger Gynecol Assoc. 2011;12:110–7.

    Article  Google Scholar 

  7. Halbert SA, Tam PY, Blandau RJ. Egg transport in the rabbit oviduct: the role of cilia and muscle. Science. 1976;191:1052–3.

    Article  PubMed  CAS  Google Scholar 

  8. Fauci LJ, Dillon R. Biofluidmechanics of reproduction. Ann Rev Fluid Mech. 2006;38:371–94.

    Article  Google Scholar 

  9. Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human fallopian tube cilia. Hum Reprod. 2006;12:363–72.

    Article  CAS  Google Scholar 

  10. Xie Y, Wang F, Zhong W, Puscheck E, Hayley S, Rappolee DA. Shear stress induces preimplantation embryo death that is delayed by the zona pellucid and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod. 2006;75:45–55.

    Article  PubMed  CAS  Google Scholar 

  11. Zervomanolakis I, Ott HW, Hadziomerovic D, Mattle V, Seeber BE, Virgolini I, et al. Physiology of upward transport in the human female genital tract. Ann NY Acad Sci. 2007;1101:1–20.

    Article  PubMed  CAS  Google Scholar 

  12. Greenwald GS. A study of transport of ova through rabbit oviduct. Fertil Steril. 1961;12:80–95.

    PubMed  CAS  Google Scholar 

  13. Portnow J, Talo A, Hodgson BJ. A random walk model of ovum transport. Bull Math Biol. 1977;39:349–57.

    PubMed  CAS  Google Scholar 

  14. Anand S, Guha SK. Mechanics of transport of the ovum in the oviduct. Med Biol Eng Comput. 1978;16:256–61.

    Article  PubMed  CAS  Google Scholar 

  15. Halbert SA, Becker DR, Szal SE. Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod. 1989;40:1131–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner DK, Lane M. Amino-acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48:377–85.

    Article  PubMed  CAS  Google Scholar 

  17. Holmvall K, Camper L, Kimura JH, Lundgren-Akerlund E. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res. 1995;221:496–503.

    Article  PubMed  CAS  Google Scholar 

  18. Fukui Y, Lee ES, Araki N. Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J Anim Sci. 1996;74:2752–8.

    PubMed  CAS  Google Scholar 

  19. Wang JH, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol. 2006;6:1–16.

    Article  Google Scholar 

  20. Matsuura K, Hayashi N, Kuroda Y, Takiue C, Hirata R, Takenami M, et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod BioMedOnline. 2010;20:358–64.

    Article  Google Scholar 

  21. Mizobe Y, Yoshida M, Miyoshi K. Enhancement of cytoplasmic maturation of in vitro-matured pig oocytes by mechanical vibration. J Reprod Dev. 2010;56:285–90.

    Article  PubMed  Google Scholar 

  22. Isachenko E, Maettner R, Isachenko V, Roth S, Kreienberg R, Sterzik K. Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab. 2010;56:569–76.

    PubMed  Google Scholar 

  23. Ferraretti AP, Marca AL, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of ‘poor responder’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;0:1–9.

    Google Scholar 

  24. Jenkins JM, Davies DW, Devonport H, Anthony FW, Gadd SC, Watson RH, et al. Comparison of ‘poor’ responders with ‘good’ responders using a standard buserelin/human menopausal gonadotropin regime for in-vitro fertilization. Hum Reprod. 1991;6:918–21.

    PubMed  CAS  Google Scholar 

  25. Keay SD, Liversedge NH, Mathur RS, Jenkins JM. Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol. 1997;104:521–7.

    Article  PubMed  CAS  Google Scholar 

  26. Land JA, Yarmolinskaya MI, Dumoulin JC, Evers JL. High-dose human menopausal gonadotrophin stimulation in poor responders does not improve in vitro fertilization outcome. Fertil Steril. 1996;65:961–5.

    PubMed  CAS  Google Scholar 

  27. Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril. 2000;73:667–76.

    Article  PubMed  CAS  Google Scholar 

  28. Frattarelli JL, Hill MJ, McWilliams GD, Miller KA, Bergh PA, Scott RT. A luteal estradiol protocol for expected poor-responders improves embryo number and quality. Fertil Steril. 2008;89:1118–22.

    Article  PubMed  CAS  Google Scholar 

  29. Schoolcraft W, Schlenker T, Gee M, Stevens J, Wagley L. Improved controlled ovarian hyperstimulation in poor responder in vitro fertilization patients with a microdose follicle-stimulating hormone flare, growth hormone protocol. Fertil Steril. 1997;67:93–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ryu EK, Hur YS, Ann JY, Maeng JY, Park M, Park JH, et al. Vitrification of mouse embryos using the thin plastic strip method. Cli Exp Reprod Med. 2012;39:153–60.

    Article  Google Scholar 

  31. Arndt-Jovin DJ, Jovin TM. Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem. 1977;25:585–9.

    Article  PubMed  CAS  Google Scholar 

  32. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 1983;32:1171–80.

    Article  PubMed  CAS  Google Scholar 

  33. Isachenko V, Maettner R, Sterzik K, Strehler E, Kreinberg R, Hancke K, et al. In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod BioMedOnline. 2011;22:536–44.

    Article  Google Scholar 

  34. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.

    Article  PubMed  CAS  Google Scholar 

  35. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.

    Article  PubMed  CAS  Google Scholar 

  36. Melin J, Lee A, Foygel K, Leong DE, Quake SR, Yao MW. In vitro embryo culture in defined, Sub-microliter Volumes. Dev Dyn. 2009;238:950–5.

    Article  PubMed  Google Scholar 

  37. Dai SJ, Xu CL, Wang J, Sun YP, Chian RC. Effect of culture medium volume and embryo density on early mouse embryonic development: Tracking the development of the individual embryo. J Assist Reprod Genet. 2012;29:617–23.

    Article  PubMed  Google Scholar 

  38. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation of mouse embryos in vitro. J Exp Zool. 1978;206:73–80.

    Article  PubMed  CAS  Google Scholar 

  39. Hooper K, Lane M, Gardner DK. Reduced oxygen concentration increased mouse embryo development and oxidative metabolism. Theriogenology. 2001;55:S334.

    Google Scholar 

  40. Westrom L, Mardh PA, Mecklenburg CV, Hakansson CH. Studies on ciliated epithelia of the human genital tract. II. The mucociliary wave pattern of fallopian tube epithelium. Fertil Steril. 1977;28:955–61.

    PubMed  CAS  Google Scholar 

  41. Foo JY, Lim CS. Biofluid mechanics of the human reproductive process: modeling of the complex interaction and pathway to the oocytes. Zygotes. 2008;16:343–54.

    Article  Google Scholar 

  42. Blake JF, Vann PG, Winet H. A model of ovum transport. J Theor Biol. 1983;102:145–66.

    Article  PubMed  CAS  Google Scholar 

  43. Gopichandran NJ, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction. 2006;131:269–77.

    Article  PubMed  CAS  Google Scholar 

  44. Cabrera LM, Heo YS, Ding J, Takayama S, Smith GD. Improved blastocyst development with microfluidics and Braille pin actuator enabled dynamic culture. Fertil Steril. 2006;S43.

  45. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25:613–22.

    Article  PubMed  CAS  Google Scholar 

  46. Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17:541–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soo Hur.

Additional information

Capsule Micro-vibration culture system can improve mouse embryo development rate and clinical outcomes in poor responders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hur, Y.S., Park, J.H., Ryu, E.K. et al. Effect of micro-vibration culture system on embryo development. J Assist Reprod Genet 30, 835–841 (2013). https://doi.org/10.1007/s10815-013-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0007-0

Keywords

Navigation