Skip to main content
Log in

The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This research proposed to study the changes in lipid composition in cumulus cells (CCs) from women who achieved pregnancy compared with women who did not, after in vitro fertilization treatment. This approach has the potential to provide novel information on the lipid metabolism of the CCs and as an additional method to predict pregnancy.

Method

Fifty-four samples from couples with tubal and male factor infertility and where the female partner was age 35 or younger were divided in two groups according to their level of hCG 14 days after embryo transfer as follows: (1) 23 samples in pregnant group and (2) 31 samples in non-pregnant group. Lipid extraction was performed by the Bligh-Dyer protocol, and lipid profiles were obtained by MALDI-TOF MS. Mass spectra data were processed with MassLynx, and statistical analysis was performed using MarkerLynx extended statistic. OPLS-DA model was built.

Results

S-plot Analysis revealed three ions as potential markers in the pregnant group, and five ions in the non-pregnant group. These ions were identified in the human metabolome database (HMDB) as phosphatidylcholine in the pregnant group and as phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol species in the non-pregnant group. These lipids might be involved in cell proliferation and differentiation, apoptosis and GAP junction regulation.

Conclusion

We conclude that MALDI-TOF MS can be used as an informative and fast analytical strategy to obtain and study the lipid profile of cumulus cells and can potentially be used as a supporting tool to predict pregnancy based on the metabolic state of the CCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van Der Elst J, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod. 2010;25:1259–70.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson R, Sciorio R, Kinnell H, Bayne R, Thong K, DeSousa P, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138:629–37.

    Article  PubMed  CAS  Google Scholar 

  3. Assidi M, Montag M, Van Der Ven K, Ma S. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet. 2011;28:173–88.

    Article  PubMed  Google Scholar 

  4. Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem. 2007;282:18357–64.

    Article  PubMed  CAS  Google Scholar 

  5. Blaho VA, Buczynski MW, Brown CR, Dennis EA. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J Biol Chem. 2009;284:21599–612.

    Article  PubMed  CAS  Google Scholar 

  6. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19:2319–24.

    Article  PubMed  CAS  Google Scholar 

  7. Caballero F, Fernandez A, Matias N, et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010;285:18528–36.

    Article  PubMed  CAS  Google Scholar 

  8. Cui Z, Houweling M, Chen MH, Record M, Chap H, Vance DE, et al. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996;271:14668–71.

    Article  PubMed  CAS  Google Scholar 

  9. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7.

    Article  PubMed  Google Scholar 

  10. Diaz FJ, O'brien MJ, Wigglesworth K, Eppig JJ. The preantral granulosa cell to cumulus cell transition in the mouse ovary: development of competence to undergo expansion. Dev Biol. 2006;299:91–104.

    Article  PubMed  CAS  Google Scholar 

  11. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.

    Article  PubMed  CAS  Google Scholar 

  12. Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res. 1997;232:430–4.

    Article  PubMed  CAS  Google Scholar 

  13. Eppig J. Maintenance of meiotic arrest and the induction of oocyte maturation in mouse oocyte-granulosa cell complexes developed in vitro from preantral follicles. Biol Reprod. 1991;45:824–30.

    Article  PubMed  CAS  Google Scholar 

  14. Eppig J. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.

    Article  PubMed  CAS  Google Scholar 

  15. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Dl B. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem. 2001;276:1071–7.

    Article  PubMed  CAS  Google Scholar 

  16. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    PubMed  CAS  Google Scholar 

  17. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  PubMed  CAS  Google Scholar 

  18. Giorgetti C, Terriou P, Auquier P, Hans E, Spach JL, Salzmann J, et al. Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995;10:2427–31.

    PubMed  CAS  Google Scholar 

  19. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.

    Article  PubMed  CAS  Google Scholar 

  20. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.

    Article  PubMed  CAS  Google Scholar 

  21. Hillier S. Research challenge: what is the best non-invasive test of oocyte/embryo competence? Mol Hum Reprod. 2008;14:665.

    Article  PubMed  Google Scholar 

  22. Kim HY, Akbar M, Lau A, Edsall L. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem. 2000;275:35215–23.

    Article  PubMed  CAS  Google Scholar 

  23. Kim JK, Park SY, Na JK, Seong ES, Yu CY. Metabolite profiling based on lipophilic compounds for quality assessment of perilla (Perilla frutescens) cultivars. J Agric Food Chem. 2012;60:2257–63.

    Article  PubMed  CAS  Google Scholar 

  24. Kruger T, Menkveld R, Stander F, Lombard C, Der Merwe V, Jp VZ, et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–23.

    PubMed  CAS  Google Scholar 

  25. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3:321–31.

    Article  PubMed  CAS  Google Scholar 

  26. Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY. Cyclic adenosine 3',5'-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology. 2005;146:4437–44.

    Article  PubMed  CAS  Google Scholar 

  27. Lin YH, Hwang JL, Seow KM, Huang LW, Chen HJ, Tzeng CR. Effects of growth factors and granulosa cell co-culture on in-vitro maturation of oocytes. Reprod Biomed Online. 2009;19:165–70.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Zhou C, Xu Y, Fang C, Zhang M. Pregnancy outcome in preimplantation genetic diagnosis cycle by blastomere biopsy is related to both quality and quantity of embryos on day 3. Fertil Steril. 2009;91(4 Suppl):1355–7.

    Article  PubMed  Google Scholar 

  29. Miyoshi T, Otsuka F, Inagaki K, Otani H, Takeda M, Suzuki J, et al. Differential regulation of steroidogenesis by bone morphogenetic proteins in granulosa cells: involvement of extracellularly regulated kinase signaling and oocyte actions in follicle-stimulating hormone-induced estrogen production. Endocrinology. 2007;148:337–45.

    Article  PubMed  CAS  Google Scholar 

  30. Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol. 2000;20:1179–86.32.

    Article  PubMed  CAS  Google Scholar 

  31. Niebergall L, Vance D. The ratio of phosphatidylcholine to phosphatidylethanolamine does not predict integrity of growing MT58 Chinese hamster ovary cells. Biochim Biophys Acta. 2012;1821:324–34.

    Article  PubMed  CAS  Google Scholar 

  32. Post JA, Bijvelt JJ, Aj V. Phosphatidylethanolamine and sarcolemmal damage during ischemia or metabolic inhibition of heart myocytes. Am J Physiol. 1995;268:H773–80.

    PubMed  CAS  Google Scholar 

  33. Rantalainen M, Cloarec O, Ebbels TM, Lundstedt T, Nicholson JK, Holmes E, et al. Piecewise multivariate modelling of sequential metabolic profiling data. BMC Bioinformatics. 2008;9:105.

    Article  PubMed  Google Scholar 

  34. Reich A, Klatsky P, Carson S, Wessel G. The transcriptome of a human polar body accurately reflects its sibling oocyte. J Biol Chem. 2011;286:40743–9.

    Article  PubMed  CAS  Google Scholar 

  35. Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev. 2010;90:259–89.

    Article  PubMed  CAS  Google Scholar 

  36. Salomoni P, Wasik MA, Riedel RF, Reiss K, Choi JK, Skorski T, et al. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J Exp Med. 1998;187:1995–2007.

    Article  PubMed  CAS  Google Scholar 

  37. Schiller J, Arnhold J, Benard S, Muller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem. 1999;267:46–56.

    Article  PubMed  CAS  Google Scholar 

  38. Sela-Abramovich S, Chorev E, Galiani D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology. 2005;146:1236–44.

    Article  PubMed  CAS  Google Scholar 

  39. Shewan A, Eastburn DJ, Mostov K. Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol. 2011;3:a004796.

    Article  PubMed  Google Scholar 

  40. Sirard MA, Dufort I, Coenen K, Tremblay K, Massicotte L, Robert C. The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reprod Suppl. 2003;61:117–29.

    PubMed  CAS  Google Scholar 

  41. Tanghe S, Van Soom A, Nauwynck H, Coryn M, De Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–24.

    Article  PubMed  CAS  Google Scholar 

  42. Vance J. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res. 2008;49:1377–87.

    Article  PubMed  CAS  Google Scholar 

  43. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;182:1597–601.

    Article  PubMed  CAS  Google Scholar 

  44. Yu H, Fukami K, Watanabe Y, Ozaki C, Takenawa T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem. 1998;251:281–7.

    Article  PubMed  CAS  Google Scholar 

  45. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the study was provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process no 2010/14732-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Guimarães Lo Turco.

Additional information

Capsule Lipid profile by MALDI-TOF MS in cumulus cells as a predictor of pregnancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montani, D.A., Cordeiro, F.B., Regiani, T. et al. The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells. J Assist Reprod Genet 29, 1289–1297 (2012). https://doi.org/10.1007/s10815-012-9859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9859-y

Keywords

Navigation