Phthalates and bisphenol do not accumulate in human follicular fluid

Abstract

Objective

To determine if phthalates and bisphenol A accumulate in human follicular fluid after brief exposure to medical plastics during an IVF cycle

Study design

Prospective collection of follicular fluid from five infertile women undergoing oocyte retrieval at a University IVF laboratory and analysis of Phthalate & Bisphenol A levels.

Results

All phthalate levels were detected at levels less than 15 ng/mL and Bisphenol A levels were undetectable in all five samples. The concentrations of phthalates are 200–1000 fold less than the minimum levels reported to cause reproductive toxicity in vitro to cumulus-oocyte complexes of laboratory animals.

Conclusions

In reproductive age women undergoing infertility treatments there is little transfer or accumulation of phthalates, phthalate metabolites or bisphenol A into the microenvironment of the human preovulatory oocyte and the levels are not clinically significant. Further investigation of phthalate and bisphenol A accumulation in vivo in human follicular fluid may not be productive.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hauser R, Meeker JD, Duty S, Silva MJ, Calafat AM. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology. 2006;17:682–91.

    PubMed  Article  Google Scholar 

  2. 2.

    Wirth JJ, Rossano MG, Potter R, et al. A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Syst Biol Repro Med. 2008;54:143–54.

    Article  CAS  Google Scholar 

  3. 3.

    Kim EJ, Kim JW, Lee SK. Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environ Int. 2002;28:359–65.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Anas MK, Suzuki C, Yoshioka K, Iwamura S. Effect of mono-(2-ethylhexyl) phthalate on bovine oocyte maturation in vitro. Reprod Toxicol. 2003;17:305–10.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Hunt PA, Koehler KE, Susiarjo M, et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol. 2003;13:546–53.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Can A, Semiz O, Cinar O. Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Human Reprod. 2005;11:389–96.

    Article  CAS  Google Scholar 

  7. 7.

    Mohri T, Yoshida S. Estrogen and bisphenol A disrupt spontaneous [Ca(2+)](i) oscillations in mouse oocytes. Biochem Biophys Res Commun. 2005;326:166–73.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Mlynarcíková A, Kolena J, Ficková M, Scsuková S. Alterations in steroid hormone production by porcine ovarian granulosa cells caused by bisphenol A and bisphenol A dimethacrylate. Mol Cell Endocrinol. 2005;244:57–62.

    PubMed  Article  Google Scholar 

  9. 9.

    Mlynarcíková A, Ficková M, Scsuková S. The effects of selected phenol and phthalate derivatives on steroid hormone production by cultured porcine granulosa cells. Altern Lab Anim. 2007;35:71–7.

    PubMed  Google Scholar 

  10. 10.

    Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat Res. 2008;651:82–92.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat Res. 2008;651:71–81.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Lenie S, Smitz J. Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles. Toxicol Lett. 2009;185:143–52.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Mlynarčíková A, Nagyová E, Ficková M, Scsuková S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicol In Vitro. 2009;23:371–7.

    PubMed  Article  Google Scholar 

  14. 14.

    Davis BJ, Maronpot RR, Heindel JJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994;128:216–23.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Davis BJ, Weaver R, Gaines LJ, Heindel JJ. Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol Appl Pharmacol. 1994;128:224–8.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Lovekamp TN, Davis BJ. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001;172:217–24.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology. 2004;145:592–603.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Gunnarsson D, Leffler P, Ekwurtzel E, Martinsson G, Liu K, Selstam G. Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reproduction. 2008;135:693–703.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Svechnikov K, Svechnikova I, Söder O. Inhibitory effects of mono-ethylhexyl phthalate on steroidogenesis in immature and adult rat Leydig cells in vitro. Reprod Toxicol. 2008;25:485–90.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Furuya M, Sasaki F, Hassanin AM, Kuwahara S, Tsukamoto Y. Effects of bisphenol-A on the growth of comb and testes of male chicken. Can J Vet Res. 2003;67:68–71.

    PubMed  CAS  Google Scholar 

  21. 21.

    Kato H, Ota T, Furuhashi T, Ohta Y, Iguchi T. Changes in reproductive organs of female rats treated with bisphenol A during the neonatal period. Reprod Toxicol. 2003;17:283–8.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Stoker C, Rey F, Rodriguez H, et al. Sex reversal effects on Caiman latirostris exposed to environmentally relevant doses of the xenoestrogen bisphenol A. Gen Comp Endocrinol. 2003;133:287–96.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5.

    PubMed  Article  Google Scholar 

  24. 24.

    Stoker C, Beldoménico PM, Bosquiazzo VL, et al. Developmental exposure to endocrine disruptor chemicals alters follicular dynamics and steroid levels in Caiman latirostris. Gen Comp Endocrinol. 2008;156:603–12.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Tsutsumi O. Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction. J Steroid Biochem Mol Biol. 2005;93:325–30.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Högberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect. 2008;116:334–9.

    PubMed  Article  Google Scholar 

  27. 27.

    Lee YJ, Ryu HY, Kim HK, et al. Maternal and fetal exposure to bisphenol A in Korea. Reprod Toxicol. 2008;25:413–9.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE. Concentrations of phthalate metabolites in milk, urine, saliva, and Serum of lactating North Carolina women. Environ Health Perspect. 2009;117:86–92.

    PubMed  CAS  Google Scholar 

  29. 29.

    Kato K, Silva MJ, Needham LL, Calafat AM. Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Anal Chem. 2005;77:2985–91.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17:2839–41.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John E. Buster.

Additional information

Capsule

Follicular fluids obtained from 5 infertility patients previously exposed to medical plastics and undergoing ooctye retrieval demonstrate little transfer or accumulation of phthalates, phthalates metabolites or bisphenol A into the follicular microenvironment.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krotz, S.P., Carson, S.A., Tomey, C. et al. Phthalates and bisphenol do not accumulate in human follicular fluid. J Assist Reprod Genet 29, 773–777 (2012). https://doi.org/10.1007/s10815-012-9775-1

Download citation

Keywords

  • Phthalates
  • Bisphenol A
  • Follicular fluid
  • Reproductive toxins