Skip to main content

Advertisement

Log in

Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare macroporous alginate scaffolds with Matrigel for culturing frozen-thawed human primordial follicles in organ culture.

Methods

Twelve girls/women donated ovarian tissue. One tissue sample was fixed immediately after thawing (uncultured samples). Slices were cultured for 2 weeks on either Matrigel or on alginate scaffolds with a serum-free culture medium. Growth evaluation consisted of follicular counts and classification, immunohistochemistry and measurement of 17β-Estradiol (E2) production.

Results

The number of developing follicles was significantly higher in alginate scaffold-cultured samples than on Matrigel with a concomitant decrease in the number of primordial follicles in alginate scaffold-cultured samples than uncultured samples. The number of atretic follicles after 1 week was significantly higher in the Matrigel-cultured samples than in the alginate scaffold cultured samples. E2 production was similar in both groups.

Conclusions

Three dimensional alginate scaffolds are a promising putative in vitro technology for developing human primordial follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abir R, Fisch B, Raz A, Nitke S, Ben-Rafael Z. Preservation of fertility in women undergoing chemotherapy: current approach and future prospects. J Assist Reprod Genet. 1998;15:469–77.

    Article  PubMed  CAS  Google Scholar 

  2. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  PubMed  CAS  Google Scholar 

  3. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353:318–21.

    Article  PubMed  CAS  Google Scholar 

  4. Silber SJ, Lenahan KM, Levine DJ, Pineda JA, Gorman KS, Friez MJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353:58–63.

    Article  PubMed  CAS  Google Scholar 

  5. Gook DA, Edgar DH. Ovarian tissue cryopreservation. In: Donnez J, Kim SS, editors. Principles and practice of fertility preservation. UK: Cambridge University Press; 2011. p. 342–56.

    Chapter  Google Scholar 

  6. Shaw J, Trounson A. Oncological implications in the replacement of ovarian tissue. Hum Reprod. 1997;12:403–5.

    Article  PubMed  CAS  Google Scholar 

  7. Meirow D, Hardan I, Dor J, Fridman E, Elizur S, Ra'anani H, et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod. 2008;23:1007–13.

    Article  PubMed  Google Scholar 

  8. Rosendahl M, Andersen MT, Ralfkiaer E, Kjeldsen L, Andersen MK, Andersen CY. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94:2186–90.

    Google Scholar 

  9. Abir R, Feinmesser M, Yaniv I, Fisch B, Cohen IJ, Ben-Haroush A, et al. Occasional involvement of the ovary in Ewing sarcoma. Hum Reprod. 2010;25:1708–12.

    Article  PubMed  CAS  Google Scholar 

  10. Abir R, Nitke S, Ben-Haroush A, Fisch B. In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol Histopathol. 2006;21:887–98.

    PubMed  CAS  Google Scholar 

  11. Van den Hurk R, Abir R, Telfer EE, Bevers MM. Primate and bovine immature oocytes and follicles as sources of fertilizable oocytes. Hum Reprod Update. 2000;6:457–74.

    Article  PubMed  Google Scholar 

  12. Braw-Tal R, Yossefi S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil. 1997;109:165–71.

    Article  PubMed  CAS  Google Scholar 

  13. Hovatta O, Silye R, Abir R, Krausz T, Winston RM. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12:1032–6.

    Article  PubMed  CAS  Google Scholar 

  14. Wright CS, Hovatta O, Margara R, Trew G, Winston RM, Franks S, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14:1555–62.

    Article  PubMed  CAS  Google Scholar 

  15. Louhio H, Hovatta O, Sjoberg J, Tuuri T. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod. 2000;6:694–8.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang P, Louhio H, Tuuri T, Sjoberg J, Hreinsson J, Telfer EE, et al. In vitro effect of cyclic adenosine 3′, 5′-monophosphate (cAMP) on early human ovarian follicles. J Assist Reprod Genet. 2004;21:301–6.

    Article  PubMed  CAS  Google Scholar 

  17. Scott JE, Carlsson IB, Bavister BD, Hovatta O. Human ovarian tissue cultures: extracellular matrix composition, coating density and tissue dimensions. Reprod Biomed Online. 2004;9:287–93.

    Article  PubMed  CAS  Google Scholar 

  18. Scott JE, Zhang P, Hovatta O. Benefits of 8-bromo-guanosine 3′,5′-cyclic monophosphate (8-br-cGMP) in human ovarian cortical tissue culture. Reprod Biomed Online. 2004;8:319–24.

    Article  PubMed  CAS  Google Scholar 

  19. Garor R, Abir R, Erman A, Felz C, Nitke S, Fisch B. Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril. 2009;91:1967–75.

    Article  PubMed  CAS  Google Scholar 

  20. Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23:1151–8.

    Article  PubMed  CAS  Google Scholar 

  21. McLaughlin M, Telfer EE. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 139: 971–8

  22. Abir R, Roizman P, Fisch B, Nitke S, Okon E, Orvieto R, et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 h. Hum Reprod. 1999;14:1299–301.

    Article  PubMed  CAS  Google Scholar 

  23. Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben Rafael Z. Morphological study of fully and partially isolated early human follicles. Fertil Steril. 2001;75:141–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kedem A, Perets A, Gamlieli-Bonshtein I, Dvir-Ginzberg M, Mizrahi S, Cohen S. Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. Tissue Eng. 2005;11:715–22.

    Article  PubMed  CAS  Google Scholar 

  25. Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A. 2009;106:14990–5.

    Article  PubMed  CAS  Google Scholar 

  26. Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12:2739–46.

    Article  PubMed  CAS  Google Scholar 

  27. Heise M, Koepsel R, Russell AJ, McGee EA. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol. 2005;3:47.

    Article  PubMed  Google Scholar 

  28. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81:587–94.

    Article  PubMed  CAS  Google Scholar 

  29. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24:2531–40.

    Article  PubMed  CAS  Google Scholar 

  30. Pangas SA, Saudye H, Shea LD, Woodruff TK. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 2003;9:1013–21.

    Article  PubMed  CAS  Google Scholar 

  31. Amorim CA, Van Langendonckt A, David A, Dolmans MM, Donnez J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod. 2009;24:92–9.

    Article  PubMed  CAS  Google Scholar 

  32. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 2007;93:1278–84.

    Article  PubMed  Google Scholar 

  33. Newton H, Fisher J, Arnold JR, Pegg DE, Faddy MJ, Gosden RG. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod. 1998;13:376–80.

    Article  PubMed  CAS  Google Scholar 

  34. Hovatta O, Silye R, Krausz T, Abir R, Margara RA, Trew G, et al. Cryopreservation of human ovarian tissue by using dimethylsulphoxide and propandiol-sucrose as cryoprotectants. Hum Reprod. 1996;11:1268–72.

    PubMed  CAS  Google Scholar 

  35. Kedem A, Fisch B, Garor R, Ben-Zaken A, Gizunterman T, Felz C, Ben-Haroush A, Kravarusic D, Abir R. Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. J Clin Endocrinol Metab. 2011; electronic publication ahead of print

  36. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18:583–90.

    Article  PubMed  CAS  Google Scholar 

  37. Biron-Shental T, Fisch B, Van Den Hurk R, Felz C, Feldberg D, Abir R. Survival of frozen-thawed human ovarian fetal follicles in long-term organ culture. Fertil Steril. 2004;81:716–9.

    Article  PubMed  Google Scholar 

  38. Abir R, Franks S, Mobberley MA, Moore PA, Margara RA, Winston RM. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril. 1997;68:682–8.

    Article  PubMed  CAS  Google Scholar 

  39. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121–55.

    PubMed  CAS  Google Scholar 

  40. Schmidt KLT, Byskov AG, Nyobe Andersen A, Muller J, Andersen CY. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003;18:1158–64.

    Article  PubMed  CAS  Google Scholar 

  41. Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod. 1997;12:1993–2001.

    Article  PubMed  CAS  Google Scholar 

  42. Jewgenow K. Role of media, protein and energy supplements on maintenance of morphology and DNA-synthesis of small secondary domestic cat follicles during short-term culture. Theriogenology. 1998;49:1567–77.

    Article  PubMed  CAS  Google Scholar 

  43. Jin SY, Lei L, Shikanov A, Shea LD, Woodruff TK. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil Steril. 93: 2633–9

  44. Xu M, Banc A, Woodruff TK, Shea LD. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol Bioeng. 2009;103:378–86.

    Article  PubMed  CAS  Google Scholar 

  45. Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005;73:942–50.

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka H, Matsumura M, Veliky IA. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng. 1984;26:53–8.

    Article  PubMed  CAS  Google Scholar 

  47. Rowghani NM, Heise MK, McKeel D, McGee EA, Koepsel RR, Russell AJ. Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue Eng. 2004;10:545–52.

    Article  PubMed  Google Scholar 

  48. Zmora S, Glicklis R, Cohen S. Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials. 2002;23:4087–94.

    Article  PubMed  CAS  Google Scholar 

  49. O'Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68:1682–6.

    Article  PubMed  Google Scholar 

  50. Freeman I, Kedem A, Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 2008;29:3260–8.

    Article  PubMed  CAS  Google Scholar 

  51. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are greatly indebted to Ms. Gloria Ganzach from the Editorial Board of Rabin Medical Center, Beilinson Hospital for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Abir.

Additional information

Capsule Culturing human ovarian cortical tissue on a macroporous alginate scaffold seems to promote better follicular development than culturing on Matrigel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedem, A., Hourvitz, A., Fisch, B. et al. Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles. J Assist Reprod Genet 28, 761–769 (2011). https://doi.org/10.1007/s10815-011-9605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9605-x

Keywords

Navigation