Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 9, pp 773–783 | Cite as

The contribution of mitochondrial function to reproductive aging

  • Yaakov Bentov
  • Tetyana Yavorska
  • Navid Esfandiari
  • Andrea Jurisicova
  • Robert F. CasperEmail author



The number of women attempting to conceive between the ages of 36 and 44 has increased significantly in the last decade. While it is well established that women’s reproductive success dramatically declines with age, the underlying physiological changes responsible for this phenomenon are not well understood. With assisted reproductive technologies, it is clear that oocyte quality is a likely cause since women over 40 undergoing in vitro fertilization (IVF) with oocytes donated by younger women have success rates comparable to young patients. Apart from oocyte donation, there is no known intervention to improve the pregnancy outcome of older patients. The aim of this paper was the review the relevant data on the potential role of mitochondria in reproductive aging.


Review of current literature on the subject.


We present the current evidence that associate mitochondrial dysfunction with age related decrease in female reproductive outcome.


The aging process is complex, driven by a multitude of factors thought to modulate cellular and organism life span. Although the factors responsible for diminished oocyte quality remain to be elucidated, the present review focuses on the potential role of impaired mitochondrial function.


Reproductive aging Oocyte Embryo Aneuploidy Mitochondria Mitochondrial DNA 



YB, TY, AJ, NE and RFC have nothing to disclose.


  1. 1.
    Huang L, Sauve R, Birkett N, Fergusson D, van Walraven C. Maternal age and risk of stillbirth: a systematic review. Cmaj. 2008;178:165–72.PubMedGoogle Scholar
  2. 2.
    Bergh T, Ericson A, Hillensjo T, Nygren KG, Wennerholm UB. Deliveries and children born after in-vitro fertilisation in Sweden 1982–95: a retrospective cohort study. Lancet. 1999;354:1579–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Wright VC, Chang J, Jeng G, Macaluso M. Assisted reproductive technology surveillance–United States, 2005. MMWR Surveill Summ. 2008;57:1–23.PubMedGoogle Scholar
  4. 4.
    Bartmann AK, Romao GS, Ramos Eda S, Ferriani RA. Why do older women have poor implantation rates? A possible role of the mitochondria. J Assist Reprod Genet. 2004;21:79–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Hook EB. Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol. 1981;58:282–5.PubMedGoogle Scholar
  6. 6.
    Sher G, Keskintepe L, Keskintepe M, Ginsburg M, Maassarani G, Yakut T, et al. Oocyte karyotyping by comparative genomic hybridization [correction of hybrydization] provides a highly reliable method for selecting "competent" embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil Steril. 2007;87:1033–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Freeman SB, Yang Q, Allran K, Taft LF, Sherman SL. Women with a reduced ovarian complement may have an increased risk for a child with Down syndrome. Am J Hum Genet. 2000;66:1680–3.PubMedCrossRefGoogle Scholar
  8. 8.
    May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007;77:51–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Ashley MV, Laipis PJ, Hauswirth WW. Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res. 1989;17:7325–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet. 2000;26:176–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet. 2008;40:1484–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Pepling ME, Wilhelm JE, O’Hara AL, Gephardt GW, Spradling AC. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA. 2007;104:187–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Santos TA, El Shourbagy A, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85:584–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2010. doi: 10.1016/j.mito.2010.09.012
  15. 15.
    Davis AF, Clayton DA. In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol. 1996;135:883–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci. 2007;120:4025–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Tyynismaa H, Suomalainen A. Mouse models of mtDNA replication diseases. Methods. 2010;51:405–10.Google Scholar
  18. 18.
    Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123(Pt 15):2533-42.Google Scholar
  19. 19.
    Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074.Google Scholar
  20. 20.
    Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev. 2005;71:405–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7:425–9.PubMedCrossRefGoogle Scholar
  22. 22.
    May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod (Oxford, England). 2005;20:593–7.CrossRefGoogle Scholar
  23. 23.
    Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biology of reproduction. 2010;83(1): 52–62.Google Scholar
  24. 24.
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18:231–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hance N, Ekstrand MI, Trifunovic A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet. 2005;14:1775–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Huo L, Scarpulla RC. Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol. 2001;21:644–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Ristevski S, O’Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ. The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol Cell Biol. 2004;24:5844–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. In: Cellular Energetics: Glycolysis, Aerobic Oxidation, and Photosynthesis: W. H. FREEMAN, 2000.Google Scholar
  29. 29.
    Crane FL. The evolution of coenzyme Q. BioFactors (Oxford, England). 2008;32:5–11.Google Scholar
  30. 30.
    Wilding M, Fiorentino A, De Simone ML, Infante V, De Matteo L, Marino M, et al. Energy substrates, mitochondrial membrane potential and human preimplantation embryo division. Reprod Biomed Online. 2002;5:39–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Barbehenn EK, Wales RG, Lowry OH. The explanation for the blockade of glycolysis in early mouse embryos. Proc Natl Acad Sci USA. 1974;71:1056–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biology of reproduction. 2010;83(6):909–18.Google Scholar
  33. 33.
    Wilding M, Di Matteo L, Dale B. The maternal age effect: a hypothesis based on oxidative phosphorylation. Zygote (Cambridge, England). 2005;13:317–23.Google Scholar
  34. 34.
    Seifer DB, DeJesus V, Hubbard K. Mitochondrial deletions in luteinized granulosa cells as a function of age in women undergoing in vitro fertilization. Fertil Steril. 2002;78:1046–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod (Oxford, England). 1995;10:415–24.Google Scholar
  36. 36.
    Wilding M, De Placido G, De Matteo L, Marino M, Alviggi C, Dale B. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril. 2003;79:340–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998;145:81–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Voisine C, Craig EA, Zufall N, von Ahsen O, Pfanner N, Voos W. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell. 1999;97:565–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Acton BM, Jurisicova A, Jurisica I, Casper RF. Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod. 2004;10:23–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007;77:2–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Thouas GA, Trounson AO, Wolvetang EJ, Jones GM. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod. 2004;71:1936–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Takeuchi T, Neri QV, Katagiri Y, Rosenwaks Z, Palermo GD. Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol Reprod. 2005;72:584–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Thouas GA, Trounson AO, Jones GM. Effect of female age on mouse oocyte developmental competence following mitochondrial injury. Biol Reprod. 2005;73:366–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Yin H, Baart E, Betzendahl I, Eichenlaub-Ritter U. Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis. 1998;13:567–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A. High mitochondrial DNA copy number has detrimental effects in mice. Human molecular genetics. 2010;19(13):2695–705.Google Scholar
  46. 46.
    Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Qiang W, Weiqiang K, Qing Z, Pengju Z, Yi L. Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med. 2007;39:535–43.PubMedGoogle Scholar
  48. 48.
    Luce K, Weil AC, Osiewacz HD. Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol. 2010;694:108–25.Google Scholar
  49. 49.
    Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280–9.Google Scholar
  50. 50.
    Tolkovsky AM. Mitophagy. Biochim Biophys Acta. 2009;1793:1508–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30.Google Scholar
  52. 52.
    Mammucari C, Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev. 2010;131(7–8):536–43.Google Scholar
  53. 53.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedGoogle Scholar
  54. 54.
    Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994;91:10771–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet. 1997;15:363–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet. 2008;40:275–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet. 1995;57:239–47.PubMedGoogle Scholar
  58. 58.
    Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64:577–83.PubMedGoogle Scholar
  59. 59.
    Kang D, Hamasaki N. Mitochondrial DNA in somatic cells: a promising target of routine clinical tests. Clin Biochem. 2005;38:685–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Yu X, Wester-Rosenlof L, Gimsa U, Holzhueter SA, Marques A, Jonas L, et al. The mtDNA nt7778 G/T polymorphism affects autoimmune diseases and reproductive performance in the mouse. Hum Mol Genet. 2009;18:4689–98.PubMedCrossRefGoogle Scholar
  61. 61.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Tarin JJ, Brines J, Cano A. Long-term effects of delayed parenthood. Hum Reprod. 1998;13:2371–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Aagesen L, Grinsted J, Mikkelsen M. Advanced grandmaternal age on the mother’s side–a risk of giving rise to trisomy 21. Ann Hum Genet. 1984;48:297–301.PubMedCrossRefGoogle Scholar
  64. 64.
    Malini SS, Ramachandra NB. Influence of advanced age of maternal grandmothers on Down syndrome. BMC Med Genet. 2006;7:4.PubMedCrossRefGoogle Scholar
  65. 65.
    St John JC, Cooke ID, Barratt CL. Mitochondrial mutations and male infertility. Nat Med. 1997;3:124–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Smits LJ, Willemsen WN, Zielhuis GA, Jongbloet PH. Conditions at conception and risk of menstrual disorders. Epidemiology. 1997;8:524–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Corbould A. Insulin resistance in skeletal muscle and adipose tissue in polycystic ovary syndrome: are the molecular mechanisms distinct from type 2 diabetes? Panminerva Med. 2008;50:279–94.PubMedGoogle Scholar
  68. 68.
    Ruiz-Pesini E, Diez C, Lapena AC, Perez-Martos A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 1998;44:1616–20.PubMedGoogle Scholar
  69. 69.
    Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Burstein EB, Y. Omari, S. Yavorska, T. Jurisicova, A. Casper, R.F.Mitochondria in the offspring of old mice exhibit alterations similar to those seen in their mothers In: DeCherney AH, ed. ASRM Annual Meeting. Denver, Colorado: Elsevier Inc., 2010:S57.Google Scholar
  72. 72.
    Cohen J, Scott R, Alikani M, Schimmel T, Munne S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4:269–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Muggleton-Harris A, Whittingham DG, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature. 1982;299:460–2.PubMedCrossRefGoogle Scholar
  74. 74.
    Barritt J, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7:428–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod (Oxford, England). 2001;16:513–6.CrossRefGoogle Scholar
  76. 76.
    Chiaratti MR, Ferreira CR, Perecin F, Meo SC, Sangalli JR, Mesquita LG et al. Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reproductive biomedicine online. 2011;22(2):172–83.Google Scholar
  77. 77.
    Harvey AJ, Gibson TC, Quebedeaux TM, Brenner CA. Impact of assisted reproductive technologies: a mitochondrial perspective of cytoplasmic transplantation. Curr Top Dev Biol. 2007;77:229–49.PubMedCrossRefGoogle Scholar
  78. 78.
    Acton BM, Lai I, Shang X, Jurisicova A, Casper RF. Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol Reprod. 2007;77:569–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Moini H, Packer L, Saris NE. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol. 2002;182:84–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Yi X, Maeda N. Endogenous production of lipoic acid is essential for mouse development. Mol Cell Biol. 2005;25:8387–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Santos-Ocana C, Do TQ, Padilla S, Navas P, Clarke CF. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J Biol Chem. 2002;277:10973–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Mitchell P. The protonmotive Q cycle: a general formulation. FEBS Lett. 1975;59:137–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7(Suppl):S41–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Noia G, Romano D, De Santis M, Mariorenzi S, Caruso A, Mancuso S. Coenzyme Q10 fetal plasma levels. Fetal Diagn Ther. 1998;13:127–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Compagnoni G, Giuffre B, Lista G, Mosca F, Marini A. CoQ10 plasmatic levels in breast-fed infants compared to formula-fed infants. Biol Neonate. 2004;86:165–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Pignatti C, Cocchi M, Weiss H. Coenzyme Q10 levels in rat heart of different age. Biochem Exp Biol. 1980;16:39–42.PubMedGoogle Scholar
  87. 87.
    Mas E, Mori TA. Coenzyme Q(10) and statin myalgia: what is the evidence? Curr Atheroscler Rep. 2010;12(6):407–13.Google Scholar
  88. 88.
    Quinzii CM, Hirano M, DiMauro S. CoQ10 deficiency diseases in adults. Mitochondrion. 2007;7(Suppl):S122–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Marriage BJ, Clandinin MT, Macdonald IM, Glerum DM. Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol Genet Metab. 2004;81:263–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002;50:3337–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Casper RF, Quesne M, Rogers IM, Shirota T, Jolivet A, Milgrom E, et al. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol. 1999;56:784–90.PubMedGoogle Scholar
  92. 92.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8:157–68.PubMedCrossRefGoogle Scholar
  93. 93.
    Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA. 2008;105:9793–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yaakov Bentov
    • 1
    • 2
    • 5
  • Tetyana Yavorska
    • 3
    • 6
  • Navid Esfandiari
    • 1
    • 2
  • Andrea Jurisicova
    • 2
    • 3
    • 6
  • Robert F. Casper
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Toronto Centre for Advanced Reproductive TechnologyUniversity of TorontoTorontoCanada
  2. 2.Division of Reproductive Sciences, Department of Obstetrics and GynecologyUniversity of TorontoTorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoTorontoCanada
  4. 4.Department of Obstetrics PhysiologyUniversity of TorontoTorontoCanada
  5. 5.Samuel Lunenfeld Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoCanada
  6. 6.Samuel Lunenfeld Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoCanada

Personalised recommendations