Skip to main content
Log in

Biological pH buffers in IVF: help or hindrance to success

  • Technical Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Minimizing environmental stress helps maintain cellular homeostasis and is a crucial component in optimizing embryo development in vitro and resulting ART success. One stressor of particular interest is pH. Biologic buffers, such as HEPES and MOPS, are valuable tools for stabilizing pH. The objective of this manuscript is to summarize efficacy and impact of various pH buffers used during IVF lab procedures

Methods

Keyword searches were performed using Pubmed and Medline and relevant literature reviewed.

Results

Various pH buffers have been used with varying degrees of success for gamete and embryo processing in a variety of animal species, as well as in human.

Conclusion

Though biologic buffers off a means to improve pH stability, not all buffers may be appropriate for use with gametes and embryos. Specific buffers may have undesired effects, and these may be buffer, species, cell type or concentration dependent. Continued research is needed to further refine and improve the use of biologic buffers for use in human ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;229(5280):132–3.

    Article  PubMed  CAS  Google Scholar 

  2. Steptoe PC, Edwards RG. Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet. 1976;1(7965):880–2.

    Article  PubMed  CAS  Google Scholar 

  3. Brinster RL. Studies on the Development of Mouse Embryos in Vitro. I. The Effect of Osmolarity and Hydrogen Ion Concentration. J Exp Zool. 1965;158:49–57.

    Article  PubMed  CAS  Google Scholar 

  4. Hershlag A, Feng H. The effect of CO2 concentration and pH on the in vitro development of mouse embryos. Fertil Magazine. 2001;4:21–2.

    Google Scholar 

  5. Carney EW, Bavister BD. Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod. 1987;36(5):1155–63.

    Article  PubMed  CAS  Google Scholar 

  6. Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95(4):1291–4.

    Article  PubMed  CAS  Google Scholar 

  7. Emmens CW. The motility and viability of rabbit spermatozoa at different hydrogen-ion concentrations. J Physiol. 1947;106(4):471–81.

    CAS  Google Scholar 

  8. Pholpramool C, Chaturapanich G. Effect of sodium and potassium concentrations and pH on the maintenance of motility of rabbit and rat epididymal spermatozoa. J Reprod Fertil. 1979;57(1):245–51.

    Article  PubMed  CAS  Google Scholar 

  9. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.

    Article  PubMed  CAS  Google Scholar 

  10. Bagger PV, Byskov AG, Christiansen MD. Maturation of mouse oocytes in vitro is influenced by alkalization during their isolation. J Reprod Fertil. 1987;80(1):251–55.

    Article  PubMed  CAS  Google Scholar 

  11. Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.

    Article  PubMed  CAS  Google Scholar 

  12. Leclerc C, Becker D, Buehr M, Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271(5 Pt 1):C1512–20.

    PubMed  CAS  Google Scholar 

  15. Lane M, Baltz JM, Bavister BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.

    Article  PubMed  CAS  Google Scholar 

  16. Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.

    Article  PubMed  CAS  Google Scholar 

  17. Berthelot F, Terqui M. Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos. Reprod Nutr Dev. 1996;36(3):241–51.

    Article  PubMed  CAS  Google Scholar 

  18. Kane MT. The effects of pH on culture of one-cell rabbit ova to blastocysts in bicarbonate buffered medium. J Reprod Fertil. 1974;38(2):477–80.

    Article  PubMed  CAS  Google Scholar 

  19. Hamamah S, Gatti JL. Role of the ionic environment and internal pH on sperm activity. Hum Reprod. 1998;13 Suppl 4:20–30.

    PubMed  CAS  Google Scholar 

  20. Babcock DF, Rufo Jr GA, Lardy HA. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc Natl Acad Sci USA. 1983;80(5):1327–31.

    Article  PubMed  CAS  Google Scholar 

  21. Babcock DF, Pfeiffer DR. Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms. J Biol Chem. 1987;262(31):15041–7.

    PubMed  CAS  Google Scholar 

  22. Marquez B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. Biol Reprod. 2007;76(4):660–5.

    Article  PubMed  CAS  Google Scholar 

  23. Leclerc C, Becker D, Buehr M, Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271(5 Pt 1):1512–20.

    Google Scholar 

  26. Lane M, Baltz JM, Bavister BD. Na+/H + antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.

    Article  PubMed  CAS  Google Scholar 

  27. Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.

    Article  PubMed  CAS  Google Scholar 

  28. Lane M, Lyons EA, Bavister BD. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod. 2000;15(2):389–94.

    Article  PubMed  CAS  Google Scholar 

  29. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42.

    Article  PubMed  CAS  Google Scholar 

  30. Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.

    Article  PubMed  CAS  Google Scholar 

  31. Zander-Fox D, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21(2):219–29.

    Article  PubMed  Google Scholar 

  32. Phillips KP, Leveille MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.

    Article  PubMed  CAS  Google Scholar 

  33. Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006;133(4):591–9.

    Article  PubMed  CAS  Google Scholar 

  34. FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development. 2007;134(23):4283–95.

    Article  PubMed  CAS  Google Scholar 

  35. Phillips KP, Baltz JM. Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. Dev Biol. 1999;208(2):392–405.

    Article  PubMed  CAS  Google Scholar 

  36. Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, et al. Hydrogen ion buffers for biological research. Anal Biochem. 1980;104(2):300–10.

    Article  PubMed  CAS  Google Scholar 

  37. Eagle H. Buffer combinations for mammalian cell culture. Science. 1971;174(8):500–3.

    Article  PubMed  CAS  Google Scholar 

  38. Good NE, Izawa S. Hydrogen ion buffers. Meth Enzymol. 1972;24:53–68.

    Article  PubMed  CAS  Google Scholar 

  39. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia MA, Graham EF. Development of a buffer system for dialysis of bovine spermatozoa before freezing. I. Effect of zwitterion buffers. Theriogenology. 1989;31(5):1021–8.

    Article  PubMed  CAS  Google Scholar 

  41. Crabo BG, Brown KI, Graham EF. Effect of some buffers on storage and freezing of boar spermatozoa. J Anim Sci. 1972;35(2):377–82.

    PubMed  CAS  Google Scholar 

  42. Brown KI, Graham EF, Crabo BG. Effect of some hydrogen ion buffers on storage and freezing of turkey spermatozoa. Poult Sci. 1972;51(3):840–9.

    PubMed  CAS  Google Scholar 

  43. Graham EF, Crabo BG, Brown KI. Effect of some zwitter ion buffers on the freezing and storage of spermatozoa. I. Bull J Dairy Sci. 1972;55(3):372–8.

    Article  CAS  Google Scholar 

  44. Molinia FC, Evans G, Maxwell WM. In vitro evaluation of zwitterion buffers in diluents for freezing ram spermatozoa. Reprod Nutr Dev. 1994;34(5):491–500.

    Article  PubMed  CAS  Google Scholar 

  45. Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.

    Article  PubMed  CAS  Google Scholar 

  46. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810.

    Article  PubMed  Google Scholar 

  47. Palasz AT, Brena PB, De la Fuente J, Gutierrez-Adan A. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology. 2008;70(9):1461–70.

    Article  PubMed  CAS  Google Scholar 

  48. Sieracki NA, Hwang HJ, Lee MK, Garner DK, Lu Y. A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Commun. 2008;7:823–5.

    Article  CAS  Google Scholar 

  49. Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.

    Article  PubMed  Google Scholar 

  50. Morgia F, Torti M, Montigiani M, Piscitelli C, Giallonardo A, Schimberni M, et al. Use of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic sperm injection procedures is detrimental to the outcome of in vitro fertilization. Fertil Steril. 2006;85(5):1415–9.

    Article  PubMed  CAS  Google Scholar 

  51. Graves CN, Biggers JD. Carbon dioxide fixation by mouse embryos prior to implantation. Science. 1970;167(924):506–8.

    Article  Google Scholar 

  52. Quinn P, Wales RG. Fixation of carbon dioxide by pre-implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust J Biol Sci. 1971;24(6):1277–90.

    PubMed  CAS  Google Scholar 

  53. Quinn P, Wales RG. Fixation of carbon dioxide by preimplantation rabbit embryos in vitro. J Reprod Fertil. 1974;36(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  54. Lawitts JA, Biggers JD. Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol Reprod. 1991;45(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  55. Kane MT. Bicarbonate requirements for culture of one-cell rabbit ova to blastocysts. Biol Reprod. 1975;12(5):5525.

    Article  Google Scholar 

  56. Mahadevan MM, Fleetham J, Church RB, Taylor PJ. Growth of mouse embryos in bicarbonate media buffered by carbon dioxide, hepes, or phosphate. J In Vitro Fert Embryo Transf. 1986;3(5):304–8.

    Article  PubMed  CAS  Google Scholar 

  57. Farrell PS, Bavister BD. Short-term exposure of two-cell hamster embryos to collection media is detrimental to viability. Biol Reprod. 1984;31(1):109–14.

    Article  PubMed  CAS  Google Scholar 

  58. Escriba MJ, Silvestre MA, Saeed AM, Garcia-Ximenez F. Comparison of the effect of two different handling media on rabbit zygote developmental ability. Reprod Nutr Dev. 2001;41(2):181–6.

    Article  PubMed  CAS  Google Scholar 

  59. Barnett DK, Clayton MK, Kimura J, Bavister BD. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev. 1997;48(2):227–37.

    Article  PubMed  CAS  Google Scholar 

  60. Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod. 1996;11(1):177–83.

    PubMed  CAS  Google Scholar 

  61. Lane M, Ludwig TE, Bavister BD. Phosphate induced developmental arrest of hamster two-cell embryos is associated with disrupted ionic homeostasis. Mol Reprod Dev. 1999;54(4):410–7.

    Article  PubMed  CAS  Google Scholar 

  62. Koobs DH. Phosphate mediation of the Crabtree and Pasteur effects. Science. 1972;178(57):127–33.

    Article  PubMed  CAS  Google Scholar 

  63. Bavister B. Analysis of culture media for in vitro fertilization and criteria for success. In: Mastroianni L, Biggers J, editors. Fertilization and Early Development In Vitro. New York: Plenum Press; 1981.

    Google Scholar 

  64. Vasuthevan S, Ng SC, Edirisinghe R, Bongso A, Ratnam S. The evaluation of various culture media in combination with dimethylsulfoxide for ultrarapid freezing of murine embryos. Fertil Steril. 1992;58(6):1250–3.

    PubMed  CAS  Google Scholar 

  65. Stachecki JJ, Garrisi J, Sabino S, Caetano JP, Wiemer KE, Cohen J. A new safe, simple and successful vitrification method for bovine and human blastocysts. Reprod Biomed Online. 2008;17(3):360–7.

    Article  PubMed  Google Scholar 

  66. Quinn P, Kerin JF. Experience with the cryopreservation of human embryos using the mouse as a model to establish successful techniques. J In Vitro Fert Embryo Transf. 1986;3(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  67. Molinia FC, Evans G, Maxwell WM. Fertility of ram spermatozoa pellet-frozen in zwitterion-buffered diluents. Reprod Nutr Dev. 1996;36(1):2129.

    Article  Google Scholar 

  68. Bagger PV, Byskov AG, Christiansen MD. Maturation of mouse oocytes in vitro is influenced by alkalization during their isolation. J Reprod Fertil. 1987;80(1):251–5.

    Article  PubMed  CAS  Google Scholar 

  69. Byrd SR, Flores-Foxworth G, Applewhite AA, Westhusin ME. In vitro maturation of ovine oocytes in a portable incubator. Theriogenology. 1997;47(4):857–64.

    Article  PubMed  CAS  Google Scholar 

  70. Bhattacharyya A, Yanagimachi R. Synthetic organic pH buffers can support fertilization of guinea pig eggs, but not as efficiently as bicarbonate buffer. Gamete Res. 1988;19(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  71. Behr BR, Stratton CJ, Foote WD, Knutzen V, Sher G. In vitro fertilization (IVF) of mouse ova in HEPES-buffered culture media. J In Vitro Fert Embryo Transf. 1990;7(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  72. Hagen DR, Prather RS, Sims MM, First NL. Development of one-cell porcine embryos to the blastocyst stage in simple media. J Anim Sci. 1991;69(3):1147–50.

    PubMed  CAS  Google Scholar 

  73. Ozawa M, Nagai T, Kaneko H, Noguchi J, Ohnuma K, Kikuchi K. Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: effects of pH and osmolality. Theriogenology. 2006;65(4):860–9.

    Article  PubMed  Google Scholar 

  74. Ali J, Whitten WK, Shelton JN. Effect of culture systems on mouse early embryo development. Hum Reprod. 1993;8(7):1110–4.

    PubMed  CAS  Google Scholar 

  75. Butler JE, Lechene C, Biggers JD. Noninvasive measurement of glucose uptake by two populations of murine embryos. Biol Reprod. 1988;39(4):779–86.

    Article  PubMed  CAS  Google Scholar 

  76. Lee MA, Storey BT. Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod. 1986;34(2):349–56.

    Article  PubMed  CAS  Google Scholar 

  77. Walker SK, Lampe RJ, Seamark RF. Culture of sheep zygotes in synthetic oviduct fluid medium with different concentrations of sodium bicarbonate and HEPES. Theriogenology. 1989;32(5):797–804.

    Article  PubMed  CAS  Google Scholar 

  78. Geshi M, Yonai M, Sakaguchi M, Nagai T. Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with beta-mercaptoethanol. Theriogenology. 1999;51(3):551–8.

    Article  PubMed  CAS  Google Scholar 

  79. Iwasaki T, Kimura E, Totsukawa K. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51(4):709–20.

    Article  PubMed  CAS  Google Scholar 

  80. Liu Z, Foote RH, Simkin ME. Effect of amino acids and alpha-amanitin on the development of rabbit embryos in modified protein-free KSOM with HEPES. Mol Reprod Dev. 1996;45(2):157–62.

    Article  PubMed  CAS  Google Scholar 

  81. Jones RC, Foote RH. Effect of osmolality and phosphate, 'tris', 'tes', 'mes', and 'hepes' hydrogen ion buffers on the motility of bull spermatozoa stored at 37 or 5 degreesC. Aust J Biol Sci. 1972;25(5):1047–55.

    PubMed  CAS  Google Scholar 

  82. Lepe-Zuniga JL, Zigler Jr JS, Gery I. Toxicity of light-exposed Hepes media. J Immunol Methods. 1987;103(1):145.

    Article  PubMed  CAS  Google Scholar 

  83. Zigler Jr JS, Lepe-Zuniga JL, Vistica B, Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21(5):282–7.

    Article  PubMed  CAS  Google Scholar 

  84. El-Alamy MA, Foote RH. Freezability of spermatozoa from Finn and Dorset rams in multiple semen extenders. Anim Reprod Sci. 2001;65(3–4):245–54.

    Article  PubMed  CAS  Google Scholar 

  85. El-Danasouri I, Selman H, Strehler E, De Santo M, Sterzik K. Comparison of MOPS and HEPES buffers during vitrification of human embryos. Hum Reprod. 2004;14:i136.

    Google Scholar 

  86. Wersinger C, Rebel G, Lelong-Rebel IH. Characterisation of taurine uptake in human KB MDR and non-MDR tumour cell lines in culture. Anticancer Res. 2001;21(5):3397–406.

    PubMed  CAS  Google Scholar 

  87. Stellwagen NC, Bossi A, Gelfi C, Righetti PG. DNA and buffers: are there any noninteracting, neutral pH buffers? Anal Biochem. 2000;287(1):167–75.

    Article  PubMed  CAS  Google Scholar 

  88. Schmidt J, Mangold C, Deitmer J. Membrane responses evoked by organic buffers in identified leech neurones. J Exp Biol. 1996;199(Pt 2):327–35.

    PubMed  CAS  Google Scholar 

  89. Jeyendran RS, Graham EF. An evaluation of cryoprotective compounds on bovine spermatozoa. Cryobiology. 1980;17(5):458–64.

    Article  PubMed  CAS  Google Scholar 

  90. Jeyendran RS, Gunawardana VK, Barisic D, Wentz AC. TEST-yolk media and sperm quality. Hum Reprod Update. 1995;1(1):73–9.

    Article  PubMed  CAS  Google Scholar 

  91. Zavos PM, Goodpasture JC, Zaneveld LJ, Cohen MR. Motility and enzyme activity of human spermatozoa stored for 24 hours at +5 degrees C and -196 degrees C. Fertil Steril. 1980;34(6):607–9.

    PubMed  CAS  Google Scholar 

  92. Jaskey DG, Cohen MR. Twenty-four to ninety-six-hour storage of human spermatozoa in test-yolk buffer. Fertil Steril. 1981;35(2):205–8.

    PubMed  CAS  Google Scholar 

  93. Jeyendran RS, Van der Ven HH, Kennedy W, Perez-Pelaez M, Zaneveld LJ. Comparison of glycerol and a zwitter ion buffer system as cryoprotective media for human spermatozoa. Effect on motility, penetration of zona-free hamster oocytes, and acrosin/proacrosin. J Androl. 1984;5(1):1–7.

    PubMed  CAS  Google Scholar 

  94. McCoshen J, WA A, Tyson JE. Effectiveness of human semen frozen in TESE-yolk- buffered medium on AID outcome. Fertil Steril. 1984;42:162–3.

    Google Scholar 

  95. Bolanos JR, Overstreet JW, Katz DF. Human sperm penetration of zona-free hamster eggs after storage of the semen for 48 hours at 2 degrees C to 5 degrees C. Fertil Steril. 1983;39(4):536–41.

    PubMed  CAS  Google Scholar 

  96. Johnson AR, Syms AJ, Lipshultz LI, Smith RG. Conditions influencing human sperm capacitation and penetration of zona-free hamster ova. Fertil Steril. 1984;41(4):603–8.

    PubMed  CAS  Google Scholar 

  97. Yang YS, Rojas FJ, Stone SC. Acrosome reaction of human spermatozoa in zona-free hamster egg penetration test. Fertil Steril. 1988;50(6):954–9.

    PubMed  CAS  Google Scholar 

  98. Bielfeld P, Jeyendran RS, Holmgren WJ, Zaneveld LJ. Effect of egg yolk medium on the acrosome reaction of human spermatozoa. J Androl. 1990;11(3):260–9.

    PubMed  CAS  Google Scholar 

  99. Carrell DT, Bradshaw WS, Jones KP, Middleton RG, Peterson CM, Urry RL. An evaluation of various treatments to increase sperm penetration capacity for potential use in an in vitro fertilization program. Fertil Steril. 1992;57(1):134–8.

    PubMed  CAS  Google Scholar 

  100. Chan SY, Tucker MJ. Comparative study on the use of human follicular fluid or egg yolk medium to enhance the performance of human sperm in the zona-free hamster oocyte penetration assay. Int J Androl. 1992;15(1):32–42.

    Article  PubMed  CAS  Google Scholar 

  101. Falk RM, Silverberg KM, Fetterolf PM, Kirchner FK, Rogers BJ. Establishment of TEST-yolk buffer enhanced sperm penetration assay limits for fertile males. Fertil Steril. 1990;54(1):121–6.

    PubMed  CAS  Google Scholar 

  102. Lanzendorf SE, Holmgren WJ, Jeyendran RS. The effect of egg yolk medium on human sperm binding in the hemizona assay. Fertil Steril. 1992;58(3):547–50.

    PubMed  CAS  Google Scholar 

  103. Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. A prospective controlled evaluation of TEST-yolk buffer in the preparation of sperm for human in vitro fertilization in suspected cases of male infertility. Fertil Steril. 1992;58(3):551–5.

    PubMed  CAS  Google Scholar 

  104. Katayama KP, Stehlik E, Roesler M, Jeyendran RS, Holmgren WJ, Zaneveld LJ. Treatment of human spermatozoa with an egg yolk medium can enhance the outcome of in vitro fertilization. Fertil Steril. 1989;52(6):1077–9.

    PubMed  CAS  Google Scholar 

  105. Jacobs BR, Caulfield J, Boldt J. Analysis of TEST (TES and Tris) yolk buffer effects on human sperm. Fertil Steril. 1995;63(5):1064–70.

    PubMed  CAS  Google Scholar 

  106. Syms AJ, Johnson AR, Lipshultz LI, Smith RG. Effect of aging and cold temperature storage of hamster ova as assessed in the sperm penetration assay. Fertil Steril. 1985;43(5):766–72.

    PubMed  CAS  Google Scholar 

  107. Molinia FC, Evans G, Maxwell WM. Incorporation of penetrating cryoprotectants in diluents for pellet-freezing ram spermatozoa. Theriogenology. 1994;42(5):849–58.

    Article  PubMed  CAS  Google Scholar 

  108. Weidel L, Prins GS. Cryosurvival of human spermatozoa frozen in eight different buffer systems. J Androl. 1987;8(1):41–7.

    PubMed  CAS  Google Scholar 

  109. Prins GS, Weidel L. A comparative study of buffer systems as cryoprotectants for human spermatozoa. Fertil Steril. 1986;46(1):147–9.

    PubMed  CAS  Google Scholar 

  110. Swain J, Ord V, Taylor D, Sossamon V, Pool T. Use of Two Zwitterionic Buffers in IVF Handling Media Supports Mouse Blastocyst Development and Normal Human Oocyte Fertilization Following ICSI. in Proceedings from the 15th Annual World Congress on IVF. 2009. Geneva, Switzerland.

  111. Garcia MA, Graham EF. Development of a buffer system for dialysis of bovine spermatozoa before freezing. III. Effect of different inorganic and organic salts on fresh and frozen-thawed semen. Theriogenology. 1989;31(5):1039–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rusty Pool for his insight and assistance with preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Swain.

Additional information

Capsule Various biologic pH buffers and their efficacy for use with gametes and embryos are reviewed and potential areas for improvement are discussed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, M.A., Clark, N.A. & Swain, J.E. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet 28, 711–724 (2011). https://doi.org/10.1007/s10815-011-9582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9582-0

Keywords

Navigation