Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 2, pp 111–117 | Cite as

Spontaneous in vitro maturation and artificial activation of human germinal vesicle oocytes recovered from stimulated cycles

  • Laura Escrich
  • Noelia Grau
  • Amparo Mercader
  • Carmen Rubio
  • Antonio Pellicer
  • María-José EscribáEmail author
Assisted Reproduction Technologies



To define germinal vesicles (GV) by morphometric and morphologic examination and by chromatin compaction and to assess their spontaneous nuclear and cytoplasmic competence.


131 GV were cultured for 42.7 ± 2.4 h. Nuclear maturation was evaluated at four time points. Sixty-seven in vitro and twenty-five in vivo metaphase II (MII) were activated. Parthenotes with 2 PB and one pronucleus (NA) were studied for ploidy.


A total of 74.8% GV matured to MII: 55% at 21.4 ± 2.4 h and 47.3% in the following 24 h. Artificial activation induced NA in 79.2% of in vivo-MII and in 22.4% of in vitro-MII. All NA were haploid.


GV spontaneously mature at the nuclear level. Their NA are haploid, but their cytoplasmic competence is compromised. Variables were not found to be predictors of oocyte competence, probably due to our population being homogeneous with respect to most of the variables studied.


Germinal vesicle Humans Oocyte activation Spontaneous in vitro maturation 



The authors would like to thank all the IVI staff who collaborated on this project, in particular the embryologists who collected the GV immature oocytes on a daily basis, the secretaries who recruited donors and Mr. Normanly who edited this manuscript. This work was funded by IMPIVA (IMIDTG/2008/29; IMIDTF/2009/142, Generalitat Valenciana) and IVI Valencia.


  1. 1.
    Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208:349–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril. 1991;55(1):109–13.PubMedGoogle Scholar
  3. 3.
    Goud PT, Goud AP, Qian C, Laverge H, Van der Elst J, De Sutter P, et al. In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum Reprod. 1998;13(6):1638–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Goud A, Goud P, Qian C, Van der Elst J, Van Maele G, Dhont M. Cryopreservation of human germinal vesicle stage and in vitro matured M II oocytes: influence of cryopreservation media on the survival, fertilization, and early cleavage divisions. Fertil Steril. 2000;74(3):487–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim BK, Lee SC, Kim KJ, Han CH, Kim JH. In vitro maturation, fertilization, and development of human germinal vesicle oocytes collected from stimulated cycles. Fertil Steril. 2000;74(6):1153–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Nogueira D, Staessen C, Van de Velde H, Van Steirteghem A. Nuclear status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril. 2000;74(2):295–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Combelles CM, Cekleniak NA, Racowsky C, Albertini DF. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum Reprod. 2002;17(4):1006–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Vanhoutte L, De Sutter P, Nogueira D, Gerris J, Dhont M, Van der Elst J. Nuclear and cytoplasmic maturation of in vitro matured human oocytes after temporary nuclear arrest by phosphodiesterase 3-inhibitor. Hum Reprod. 2007;22(5):1239–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Schramm RD, Tennier MT, Boatman DE, Bavister BD. Chromatin configurations and meiotic competence of oocytes are related to follicular diameter in nonstimulated rhesus monkeys. Biol Reprod. 1993;48:349–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Debey P, Szollosi MS, Szollosi D, Vautier D, Girousse A, Besombes D. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev. 1993;36:59–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA. Chromatin organization during mouse oocyte growth. Mol Reprod Dev. 1995;41:479–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P. Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod. 1999;60:580–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Combelles CM, Albertini DF, Racowsky C. Distinct microtubule and chromatin characteristics of human oocytes after failed in-vivo and in-vitro meiotic maturation. Hum Reprod. 2003;18(10):2124–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyara F, Migne C, Dumont-Hassan M, Le Meur A, Cohen-Bacrie P, Aubriot FX, et al. Chromatin configuration and transcriptional control in human and mouse oocytes. Mol Reprod Dev. 2003;64:458–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Sui HS, Wang HL, Yuan JH, Luo MJ, Xia P. Germinal vesicle chromatin configurations of bovine oocytes. Microsc Res Tech. 2006;69:799–807.PubMedCrossRefGoogle Scholar
  16. 16.
    Escrich L, Grau N, Meseguer M, Pellicer A, Escribá MJ: Morphologic indicators predict the stage of chromatin condensation of human germinal vesicle oocytes recovered from stimulated cycles. Fertil Steril. (2010).Google Scholar
  17. 17.
    Wickramasinghe D, Ebert KM, Albertini DF. Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Dev Biol. 1991;143:162–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Abeydeera LR. In vitro production of embryos in swine. Theriogenology. 2002;57:256–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Albertini DF. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online. 2003;6:410–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Graham CF. The production of parthenogenetic mammalian embryos and their use in biological research. Biol Rev. 1974;49:399–422.PubMedCrossRefGoogle Scholar
  21. 21.
    Whittingham DG. Pathenogenesis in Mammals. In: Finn CA, editor. Reviews of reproductive biology, vol. 2. Oxford: Oxford University Press; 1980. p. 205–31.Google Scholar
  22. 22.
    Kaufman MH. The experimental induction of parthenogenesis in the mouse. In: Balls M, Wild AE, editors. Early development of mammals. Cambridge: Cambridge University Press; 1983. p. 25–44.Google Scholar
  23. 23.
    Balakier H, Casper RF. Experimentally induced parthenogenetic activation of human oocytes. Hum Reprod. 1993;8(5):740–3.PubMedGoogle Scholar
  24. 24.
    De Sutter P, Dozortsev D, Vrijens P, Desmet R, Dhont M. Cytogenetic analysis of human oocytes parthenogenetically activated by puromycin. J Assist Reprod Genet. 1994;11(8):382–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Levron J, Cohen J, Willadsen S. Highly effective method of human oocyte activation. Zygote. 1995;3(2):157–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Azambuja R, Fugger EF, Schulman JD. Human egg activation, cryopreservation, and fertilization using a haploid pronucleus. Hum Reprod. 1996;11(9):1990–1.PubMedGoogle Scholar
  27. 27.
    Rhoton-Vlasak A, Lu PY, Barud KM, Dewald GW, Hammitt DG. Efficacy of calcium ionophore A23187 oocyte activation for generating parthenotes for human embryo research. J Assist Reprod Genet. 1996;13(10):793–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Rinaudo P, Pepperell JR, Buradgunta S, Massobrio M, Keefe DL. Dissociation between intracellular calcium elevation and development of human oocytes treated with calcium ionophore. Fertil Steril. 1997;68(6):1086–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakasaka H, Yamano S, Hinokio K, Nakagawa K, Yoshizawa M, Aono T. Effective activation method with A23187 and puromycin to produce haploid parthenogenones from freshly ovulated mouse oocytes. Zygote. 2000;8(3):203–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakagawa K, Yamano S, Nakasaka H, Hinokio K, Yoshizawa M, Aono T. A combination of calcium ionophore and puromycin effectively produces human parthenogenones with one haploid pronucleus. Zygote. 2001;9(1):83–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaufman MH. The experimental production of mammalian parthenogenetic embryos. In: Daniel JC, editor. Methods in mammalian reproduction. New York: Academic; 1978. p. 21–47.Google Scholar
  32. 32.
    Ozil JP. The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development. 1990;109:117–27.PubMedGoogle Scholar
  33. 33.
    Collas P, Fissore R, Robl JM, Sullivan EJ, Barnes FL. Electrically induced calcium elevation, activation and parthenogenetic development of bovine oocytes. Mol Reprod Dev. 1993;34:212–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Escribá MJ, García-Ximénez F. Electroactivation of rabbit oocytes in an hypotonic pulsing medium and parthenogenetic in vitro development without cytochalasin B-diploidizing pretreatment. Theriogenology. 1999;51(5):963–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Escribá MJ, García-Ximénez F. Influence of sequence duration and number of electrical pulses upon rabbit oocyte activation and parthenogenetic in vitro development. Anim Reprod Sci. 2000;59(1–2):99–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Escribá MJ, García-Ximénez F. Use of a variable electrical pulsing sequence in rabbit oocyte activation. Reprod Nutr Dev. 2000;40(3):261–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Rubio C, Rodrigo L, Mercader A, Mateu E, Buendía P, Pehlivan T, et al. Impact of chromosomal abnormalities on preimplantation embryo development. Prenat Diagn. 2007;27(8):748–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Rubio C, Buendía P, Rodrigo L, Mercader A, Mateu E, Peinado V, et al. Prognostic factors for preimplantation genetic screening in repeated pregnancy loss. Reprod Biomed Online. 2009;18(5):687–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Prins GS, Wagner C, Weidel L, Gianfortoni J, Marut EL, Scommegna A. Gonadotropins augment maturation and fertilization of human immature oocytes cultured in vitro. Fertil Steril. 1987;47(6):1035–7.PubMedGoogle Scholar
  40. 40.
    Nagy ZP, Cecile J, Liu J, Loccufier A, Devroey P, Van Steirteghem A. Pregnancy and birth after intracytoplasmic sperm injection of in vitro matured germinal-vesicle stage oocytes: case report. Fertil Steril. 1996;65(5):1047–50.PubMedGoogle Scholar
  41. 41.
    Cekleniak NA, Combelles CM, Ganz DA, Fung J, Albertini DF, Racowsky C. A novel system for in vitro maturation of human oocytes. Fertil Steril. 2001;75(6):1185–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Gadea B, Escribá MJ, Florensa M, De Los Santos MJ, Pellicer A: Effect of different media on the in-vitro maturation of denuded human oocyte. 19th European Society of Human Reproduction and Embryology (ESHRE). Madrid, Spain. July 2003. Human Reproduction. O–103. Google Scholar
  43. 43.
    De Sutter P, Dozortsev D, Cieslak J, Wolf G, Verlinsky Y, Dyban A. Parthenogenetic activation of human oocytes by puromycin. J Assist Reprod Genet. 1992;9(4):328–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Paffoni A, Brevini TA, Somigliana E, Restelli L, Gandolfi F, Ragni G. In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertil Steril. 2007;87(1):77–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laura Escrich
    • 1
  • Noelia Grau
    • 1
  • Amparo Mercader
    • 1
  • Carmen Rubio
    • 1
  • Antonio Pellicer
    • 1
    • 2
  • María-José Escribá
    • 1
    • 3
    Email author
  1. 1.Universitary Institute IVI ValenciaValenciaSpain
  2. 2.Department of Paediatrics, Obstetrics and Gynaecology, University School of MedicineValencia UniversityValenciaSpain
  3. 3.Instituto Valenciano de InfertilidadInstituto Universitario IVIValenciaSpain

Personalised recommendations