Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 2, pp 173–188 | Cite as

Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study

  • Mourad Assidi
  • Markus Montag
  • Katrin Van Der Ven
  • Marc-André SirardEmail author
Technical Innovations



To identify reliable genomic biomarkers expressed in cumulus cells that accurately and non-invasively predict the oocyte developmental competence and reinforce the already used morphological criteria.


Eight consenting patients were selected for ovarian stimulation and ICSI procedures. Cumulus-oocyte complexes were transvaginally punctured and individually selected based on both good morphological criteria and high zona pellucida birefringence. Following ICSI, two 3-day embryos per patient were transferred. Pregnancy outcome was recorded and proven implantation was thereafter confirmed. Differential gene expression was assessed using two microarray platforms. Further real-time PCR validation, Ingenuity pathways analysis and intra-patient analysis were performed on 17 selected candidates.


Seven genes were differentially (p ≤ 0.05) associated to successful pregnancy and implantation. These biomarkers could be used to predict the oocyte developmental competence.


These genomic markers are a powerful reinforcement of morphological approaches of oocyte selection. Their large-scale validation could increase pregnancy outcome and single embryo transfer efficiency.


Cumulus cells Genomic biomarkers Infertility Oocyte developmental competence Pregnancy Zona pellucida birefringence 



We thank the CIHR (Canadian Institutes of Health Research) and the NSERC (Natural Sciences and Engineering Research Council of Canada) for their financial support of this study.

Authors would like to thank the team at the IVF unit of the University of Bonn for their kind help in sample collection.


  1. 1.
    Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12:608–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82(E-Suppl):E14–23.PubMedGoogle Scholar
  3. 3.
    Ebner T, Moser M, Sommergruber M, Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: A review. Hum Reprod Update. 2003;9:251–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Yu Y, Mai Q, Chen X, Wang L, Gao L, Zhou C, et al. Assessment of the developmental competence of human somatic cell nuclear transfer embryos by oocyte morphology classification. Hum Reprod. 2009;24:649–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Coticchio G, Sereni E, Serrao L, Mazzone S, Iadarola I, Borini A. What criteria for the definition of oocyte quality? Ann N Y Acad Sci. 2004;1034:132–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Chan PJ. Developmental potential of human oocytes according to zona pellucida thickness. J In Vitro Fert Embryo Transf. 1987;4:237–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Borini A, Lagalla C, Cattoli M, Sereni E, Sciajno R, Flamigni C, et al. Predictive factors for embryo implantation potential. Reprod Biomed Online. 2005;10:653–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: A prospective study based on 4042 embryos. Hum Reprod. 2007;22:1973–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Templeton A. Joseph price oration. The multiple gestation epidemic: The role of the assisted reproductive technologies. Am J Obstet Gynecol. 2004;190:894–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Adashi EY, Barri PN, Berkowitz R, Braude P, Bryan E, Carr J, et al. Lunenfeld B, Pope A, Reynolds M, Rosenwaks Z, Shieve LA, Serour GI, Shenfield F, Templeton A, van Steirteghem A, Veeck L, Wennerholm UB: Infertility therapy-associated multiple pregnancies (births): An ongoing epidemic. Reprod Biomed Online. 2003;7:515–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: Shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstet Gynecol. 2008;20:234–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Gerris JM. Single embryo transfer and ivf/icsi outcome: A balanced appraisal. Hum Reprod Update. 2005;11:105–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinborg A. Ivf/icsi twin pregnancies: Risks and prevention. Hum Reprod Update. 2005;11:575–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Sunde A. Significant reduction of twins with single embryo transfer in ivf. Reprod Biomed Online. 2007;15 Suppl 3:28–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerris J. Single-embryo transfer versus multiple-embryo transfer. Reprod Biomed Online. 2009;18 Suppl 2:63–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamamah S, Déchaud H, Hédon B. Transfert monoembryonnaire: Une alternative pour prévenir et éviter les grossesses multiples. Gynécologie Obstétrique & Fertilité. 2007;35:480–4.CrossRefGoogle Scholar
  18. 18.
    Blondin P, Sirard MA. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev. 1995;41:54–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Mikkelsen AL, Lindenberg S. Morphology of in-vitro matured oocytes: Impact on fertility potential and embryo quality. Hum Reprod. 2001;16:1714–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296:514–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99:2890–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Hashimoto S, Saeki K, Nagao Y, Minami N, Yamada M, Utsumi K. Effects of cumulus cell density during in vitro maturation of the developmental competence of bovine oocytes. Theriogenology. 1998;49:1451–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Sirard M-A, Trounson A. Follicular factors affecting oocyte maturation and developmental competence. In: TAOG RG, editor. Biology and pathology of the oocyte: Its role in fertility and reproductive medecine. Cambridge: Cambridge University Press; 2003. p. 305–15.Google Scholar
  24. 24.
    Thompson JG, Lane M, Gilchrist RB. Metabolism of the bovine cumulus-oocyte complex and influence on subsequent developmental competence. Soc Reprod Fertil Suppl. 2007;64:179–90.PubMedGoogle Scholar
  25. 25.
    Wang Q, Sun QY. Evaluation of oocyte quality: Morphological, cellular and molecular predictors. Reprod Fertil Dev. 2007;19:1–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Gardner DK, Sakkas D. Assessment of embryo viability: The ability to select a single embryo for transfer--a review. Placenta. 2003;24(Suppl B):S5–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: A proof of concept study. Mol Hum Reprod. 2008;14:711–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson RA, Sciorio R, Kinnell H, Bayne RA, Thong KJ, de Sousa PA, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138:629–37.PubMedCrossRefGoogle Scholar
  29. 29.
    Montag M, Schimming T, Koster M, Zhou C, Dorn C, Rosing B, et al. Ven der Ven K: Oocyte zona birefringence intensity is associated with embryonic implantation potential in icsi cycles. Reprod Biomed Online. 2008;16:239–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Madaschi C, Aoki T. de Almeida Ferreira Braga DP, de Cassia Savio Figueira R, Semiao Francisco L, Iaconelli A, Jr., Borges E, Jr.: Zona pellucida birefringence score and meiotic spindle visualization in relation to embryo development and icsi outcomes. Reprod Biomed Online. 2009;18:681–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Montag M, van der Ven H. Symposium: Innovative techniques in human embryo viability assessment. Oocyte assessment and embryo viability prediction: Birefringence imaging. Reprod Biomed Online. 2008;17:454–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Ebner T, Balaban B, Moser M, Shebl O, Urman B. Ata B. Tews G: Automatic user-independent zona pellucida imaging at the oocyte stage allows for the prediction of preimplantation development. Fertil Steril; 2009.Google Scholar
  33. 33.
    Mangoli V, Dandekar S, Desai S, Mangoli R. The outcome of art in males with impaired spermatogenesis. J Hum Reprod Sci. 2008;1:73–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.PubMedCrossRefGoogle Scholar
  35. 35.
    Robert C, Gagne D, Bousquet D, Barnes FL, Sirard MA. Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence. Biol Reprod. 2001;64:1812–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 2008;79:209–22.PubMedCrossRefGoogle Scholar
  37. 37.
    NIA: National institute on aging (nia/nih), laboratory of genetics, baltimore md , USA. http://lgsungrcnianihgov/ANOVA/ 2010
  38. 38.
    IPA: Ingenuity pathways analysis, ipa, v8.0;. Ingenuity® Systems, www.ingenuitycom 2010
  39. 39.
    Hamel M, Dufort I, Robert C, Leveille MC, Leader A, Sirard MA. Genomic assessment of follicular marker genes as pregnancy predictors for human ivf. Mol Hum Reprod. 2010;16:87–96.PubMedCrossRefGoogle Scholar
  40. 40.
    McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing ivf. Hum Reprod. 2004;19:2869–74.PubMedCrossRefGoogle Scholar
  41. 41.
    van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: A microarray analysis. Mol Hum Reprod. 2008;14:157–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Hunter RHF. Physiology of the graafian follicle and ovulation, ed Cambridge University Press. Cambridge University Press: Cambridge; 2003.Google Scholar
  43. 43.
    Hernandez-Gonzalez I, Gonzalez-Robayna I, Shimada M, Wayne CM, Ochsner SA, White L, et al. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: Does this expand their role in the ovulation process? Mol Endocrinol. 2006;20:1300–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Motta PM, Nottola SA, Pereda J, Croxatto HB, Familiari G. Ultrastructure of human cumulus oophorus: A transmission electron microscopic study on oviductal oocytes and fertilized eggs. Hum Reprod. 1995;10:2361–7.PubMedGoogle Scholar
  45. 45.
    Lucidi P, Bernabo N, Turriani M, Barboni B, Mattioli M. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. Reprod Biol Endocrinol. 2003;1:45.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived bmp15 and fgfs cooperate to promote glycolysis in cumulus cells. Development. 2007;134:2593–603.PubMedCrossRefGoogle Scholar
  48. 48.
    Host E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril. 2002;77:511–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: One approach to oocyte competence. Hum Reprod. 2007;22:3069–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Familiari G, Heyn R, Relucenti M, Nottola SA, Sathananthan AH. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int Rev Cytol. 2006;249:53–141.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of ivf-et. J Assist Reprod Genet. 2001;18:490–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Haouzi D, Hamamah S. Pertinence of apoptosis markers for the improvement of in vitro fertilization (ivf). Curr Med Chem. 2009;16:1905–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: Bmp15 and gdf9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135:111–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Paradis F, Moore HS, Pasternak JA, Novak S, Dyck MK, Dixon WT, Foxcroft GR: Pig preovulatory oocytes modulate cumulus cell protein and gene expression in vitro. Mol Cell Endocrinol 2010Google Scholar
  56. 56.
    Assou S, Haouzi D. De Vos J. Hamamah S: Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod; 2010.Google Scholar
  57. 57.
    Hasegawa J, Yanaihara A, Iwasaki S, Mitsukawa K, Negishi M, Okai T. Reduction of connexin 43 in human cumulus cells yields good embryo competence during icsi. J Assist Reprod Genet. 2007;24:463–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Hunault CC, Eijkemans MJ, Pieters MH. te Velde ER, Habbema JD, Fauser BC, Macklon NS: A prediction model for selecting patients undergoing in vitro fertilization for elective single embryo transfer. Fertil Steril. 2002;77:725–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Verberg MF, Eijkemans MJ, Macklon NS, Heijnen EM, Fauser BC, Broekmans FJ. Predictors of ongoing pregnancy after single-embryo transfer following mild ovarian stimulation for ivf. Fertil Steril. 2008;89:1159–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One. 2009;4:e8211.PubMedCrossRefGoogle Scholar
  61. 61.
    Haouzi D, Assou S, Mahmoud K, Hedon B, De Vos J, Dewailly D, et al. Lh/hcgr gene expression in human cumulus cells is linked to the expression of the extracellular matrix modifying gene tnfaip6 and to serum estradiol levels on day of hcg administration. Hum Reprod. 2009;24:2868–78.PubMedCrossRefGoogle Scholar
  62. 62.
    Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS. Processing and localization of adamts-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem. 2003;278:42330–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsafriri A. Ovulation as a tissue remodelling process. Proteolysis and cumulus expansion. Adv Exp Med Biol. 1995;377:121–40.PubMedGoogle Scholar
  64. 64.
    Huo LJ, Fan HY, Liang CG, Yu LZ, Zhong ZS, Chen DY, et al. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol Reprod. 2004;71:853–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee HK, Yang Y, Su Z, Hyeon C, Lee TS, Lee HW, et al. Dynamic ca2 + -dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science. 2010;328:760–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Colvin RA, Means TK, Diefenbach TJ, Moita LF, Friday RP, Sever S, et al. Hacohen N. Luster AD: Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol; 2010.Google Scholar
  67. 67.
    Gustavsson N, Han W. Calcium-sensing beyond neurotransmitters: Functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep. 2009;29:245–59.PubMedCrossRefGoogle Scholar
  68. 68.
    Fantin A, Maden CH, Ruhrberg C. Neuropilin ligands in vascular and neuronal patterning. Biochem Soc Trans. 2009;37:1228–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Shimizu T, Jayawardana BC, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A. Hormonal regulation and differential expression of neuropilin (nrp)-1 and nrp-2 genes in bovine granulosa cells. Reproduction. 2006;131:555–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Miyabayashi K, Shimizu T, Kawauchi C, Sasada H, Sato E. Changes of mrna expression of vascular endothelial growth factor, angiopoietins and their receptors during the periovulatory period in ecg/hcg-treated immature female rats. J Exp Zool A Comp Exp Biol. 2005;303:590–7.PubMedGoogle Scholar
  71. 71.
    Bhaskar L, Krishnan VS, Thampan RV. Cytoskeletal elements and intracellular transport. J Cell Biochem. 2007;101:1097–108.PubMedCrossRefGoogle Scholar
  72. 72.
    Allworth AE, Albertini DF. Meiotic maturation in cultured bovine oocytes is accompanied by remodeling of the cumulus cell cytoskeleton. Dev Biol. 1993;158:101–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27:29–39.PubMedCrossRefGoogle Scholar
  74. 74.
    Albertini DF. Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat Res. 1992;296:57–68.PubMedGoogle Scholar
  75. 75.
    Sutovsky P, Flechon JE, Pavlok A. Microfilaments, microtubules and intermediate filaments fulfil differential roles during gonadotropin-induced expansion of bovine cumulus oophorus. Reprod Nutr Dev. 1994;34:415–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83 Suppl 1:1169–79.PubMedCrossRefGoogle Scholar
  77. 77.
    Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134:645–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Cieniewicz AM, Woodruff RI. Passage through vertebrate gap junctions of 17/18kda molecules is primarily dependent upon molecular configuration. Tissue Cell. 2010;42:47–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by pkc and pi 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001;64:1255–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Sutovsky P, Flechon JE, Flechon B, Motlik J, Peynot N, Chesne P, et al. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol Reprod. 1993;49:1277–87.PubMedCrossRefGoogle Scholar
  81. 81.
    Atlas D: Signaling role of the voltage-gated calcium channel as the molecular ‘on/off’ switch of secretion. Cell Signal 2010Google Scholar
  82. 82.
    Davis JS, Weakland LL, Farese RV, West LA. Luteinizing hormone increases inositol trisphosphate and cytosolic free ca2+ in isolated bovine luteal cells. J Biol Chem. 1987;262:8515–21.PubMedGoogle Scholar
  83. 83.
    Mattioli M, Gioia L, Barboni B. Calcium elevation in sheep cumulus-oocyte complexes after luteinising hormone stimulation. Mol Reprod Dev. 1998;50:361–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Jose O, Hernandez-Hernandez O, Chirinos M, Gonzalez-Gonzalez ME, Larrea F, Almanza A, et al. Recombinant human zp3-induced sperm acrosome reaction: Evidence for the involvement of t- and l-type voltage-gated calcium channels. Biochem Biophys Res Commun. 2010;395:530–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, et al. Requirement of phospholipase cdelta4 for the zona pellucida-induced acrosome reaction. Science. 2001;292:920–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K. Tollip and tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem. 2004;279:24435–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Seet LF, Hong W. Endofin recruits clathrin to early endosomes via tom1. J Cell Sci. 2005;118:575–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Yamakami M, Yokosawa H. Tom1 (target of myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways. Biol Pharm Bull. 2004;27:564–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Sayasith K, Bouchard N, Dore M, Sirois J. Regulation of bovine tumor necrosis factor-alpha-induced protein 6 in ovarian follicles during the ovulatory process and promoter activation in granulosa cells. Endocrinology. 2008;149:6213–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Yamashita Y, Hishinuma M, Shimada M. Activation of pka, p38 mapk and erk1/2 by gonadotropins in cumulus cells is critical for induction of egf-like factor and tace/adam17 gene expression during in vitro maturation of porcine cocs. J Ovarian Res. 2009;2:20.PubMedCrossRefGoogle Scholar
  91. 91.
    Russell DL, Robker RL. Molecular mechanisms of ovulation: Co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312.PubMedCrossRefGoogle Scholar
  92. 92.
    Hillier SG. Paracrine support of ovarian stimulation. Mol Hum Reprod. 2009;15:843–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mourad Assidi
    • 1
  • Markus Montag
    • 2
  • Katrin Van Der Ven
    • 2
  • Marc-André Sirard
    • 1
    Email author
  1. 1.Centre de recherche en biologie de la reproduction, Département des Sciences AnimalesLaval UniversitySte-FoyCanada
  2. 2.Department of Gynecological Endocrinology and Reproductive MedicineBonn UniversityBonnGermany

Personalised recommendations