Skip to main content
Log in

Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos

  • ANIMAL EXPERIMENTATION
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Oxidative stress has been implicated in the etiology of defective embryo development. Vitamin E is an effective lipid-soluble antioxidant, protecting cell membranes from peroxidative damage. In this context, this study was undertaken to find if supplementation of vitamin E in culture medium could ameliorate the developmental competence of preimplantation buffalo embryos.

Methods

Vitamin E was supplemented in maturation/embryo culture medium at concentrations of 0, 50, 100, 200 and 400 μM. The developmental competence of buffalo embryos was assessed by observing the cleavage, morulae, blastocyst rate, total cell count and comet assay.

Results

Vitamin E had no significant effect in maturation medium. Vitamin E in embryo culture medium under 5% O2 significantly reduced blastocyst formation in the 400 μM supplemented group. Culture under 20% O2 enhanced the frequency of blastocyst formation, total cell count and significantly reduced comet tail in the 100 μM supplemented group (P < 0.001) when compared with the control. Vitamin E in ECM for the first 72 h of culture period enhanced blastocyst rate and total cell number in the 100 μM group (P < 0.001) when compared with the control.

Conclusion

Our results demonstrate that the addition of Vitamin E may enhance the developmental competence of buffalo embryos in vitro by protecting them from oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Madan ML, Prakash BS. Reproductive endocrinology and biotechnology applications among buffaloes. Soc Reprod Fertil Suppl 2007;64:261–81.

    PubMed  CAS  Google Scholar 

  2. Madan ML, Das SK, Palta P. Application of reproductive technology to buffaloes. Anim Reprod Sci 1996;42:299–306. doi:10.1016/0378-4320(96)01534-5.

    Article  Google Scholar 

  3. Nasr-Esfahani MH, Johnson MH. The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 1991;113:551–60.

    PubMed  CAS  Google Scholar 

  4. Pabon JE Jr, Findley WE, Gibbons WE. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril 1989;51:896–900.

    PubMed  Google Scholar 

  5. Khurana NK, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology 2000;54:741–56. doi:10.1016/S0093-691X(00)00387-3.

    Article  PubMed  CAS  Google Scholar 

  6. Noda Y, Matsumoto H, Umaoka Y, Tatsumi K, Kishi J, Mori T. Involvement of superoxide radicals in the mouse two-cell block. Mol Reprod Dev 1991;28:356–60. doi:10.1002/mrd.1080280408.

    Article  PubMed  CAS  Google Scholar 

  7. Harvey MB, Arcellana-Panlilio MY, Zhang X, Schultz GA, Watson AJ. Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture. Biol Reprod 1995;53:532–40. doi:10.1095/biolreprod53.3.532.

    Article  PubMed  CAS  Google Scholar 

  8. El Mouatassim S, Guérin P, Ménézo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 1999;5:720–5. doi:10.1093/molehr/5.8.720.

    Article  PubMed  CAS  Google Scholar 

  9. Guyader-Joly C, Guérin P, Renard JP, Guillaud J, Ponchon S, Ménézo Y. Precursors of taurine in female genital tract: effects on developmental capacity of bovine embryo produced in vitro. Amino Acids 1998;15:27–42. doi:10.1007/BF01345278.

    Article  PubMed  CAS  Google Scholar 

  10. Rodgers RJ, Lavranos TC, Rodgers HF, Young FM, Vella CA. The physiology of the ovary: maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum. J Steroid Biochem Mol Biol 1995;53:241–6. doi:10.1016/0960-0760(95)00054-4.

    Article  PubMed  CAS  Google Scholar 

  11. Carlson JC, Wu XM, Sawada M. Oxygen radicals and the control of ovarian corpus luteum function. Free Radic Biol Med 1993;14:79–84. doi:10.1016/0891-5849(93)90511-R.

    Article  PubMed  CAS  Google Scholar 

  12. Olson SE, Seidel GE Jr. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol Reprod 2000;62:248–52. doi:10.1095/biolreprod62.2.248.

    Article  PubMed  CAS  Google Scholar 

  13. Jeong YW, Park SW, Hossein MS, Kim S, Kim JH, Lee SH, Kang SK, Lee BC, Hwang WS. Antiapoptotic and embryotrophic effects of alpha-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology 2006;66:2104–12. doi:10.1016/j.theriogenology.2006.06.007.

    Article  PubMed  CAS  Google Scholar 

  14. Pawshe CH, Totey SM, Jain SK. A comparison of three methods of recovery of goat oocytes for in vitro maturation and fertilization. Theriogenology 1994;42:117–25. doi:10.1016/0093-691X(94)90668-9.

    Article  PubMed  CAS  Google Scholar 

  15. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod 1975;12:260–74. doi:10.1095/biolreprod12.2.260.

    Article  PubMed  CAS  Google Scholar 

  16. Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 1972;30:493–7. doi:10.1530/jrf.0.0300493.

    PubMed  CAS  Google Scholar 

  17. Mermillod P, Vansteenbrugge A, Wils C, Mourmeaux JL, Massip A, Dessy F. Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos. Biol Reprod 1993;49:582–7. doi:10.1095/biolreprod49.3.582.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi M, Keicho K, Takahashi H, Ogawa H, Schultz RM, Okano A. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology 2000;54:137–45. doi:10.1016/S0093-691X(00)00332-0.

    Article  PubMed  CAS  Google Scholar 

  19. Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med 1993;15:69–75. doi:10.1016/0891-5849(93)90126-F.

    Article  PubMed  CAS  Google Scholar 

  20. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 2004;62:1186–97. doi:10.1016/j.theriogenology.2004.01.011.

    Article  PubMed  CAS  Google Scholar 

  21. Dalvit G, Llanes SP, Descalzo A, Insani M, Beconi M, Cetica P. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reprod Domest Anim 2005;40:93–7. doi:10.1111/j.1439-0531.2004.00522.x.

    Article  PubMed  CAS  Google Scholar 

  22. Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during In vitro maturation: role of cumulus cells. Biol Reprod 2000;63:805–10. doi:10.1095/biolreprod63.3.805.

    Article  PubMed  CAS  Google Scholar 

  23. Dalvit GC, Cetica PD, Pintos LN, Beconi MT. Reactive oxygen species in bovine embryo in vitro production. Biocell 2005;29:209–12.

    PubMed  CAS  Google Scholar 

  24. Kontush A, Finckh B, Karten B, Kohlschütter A, Beisiegel U. Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein. J Lipid Res 1996;37:1436–48.

    PubMed  CAS  Google Scholar 

  25. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil 1990;89:573–8. doi:10.1530/jrf.0.0890573.

    PubMed  CAS  Google Scholar 

  26. Nakao H, Nakatsuji N. Effects of co-culture, medium components and gas phase on in vitro culture of in vitro matured and in vitro fertilized bovine embryos. Theriogenology 1990;33:591–600. doi:10.1016/0093-691X(90)90536-3.

    Article  PubMed  CAS  Google Scholar 

  27. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 1993;99:673–9. doi:10.1530/jrf.0.0990673.

    PubMed  CAS  Google Scholar 

  28. Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 1994;16:31–8. doi:10.1002/bies.950160105.

    Article  PubMed  CAS  Google Scholar 

  29. Kovacic B, Vlaisavljević V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed 2008;17:229–36.

    CAS  Google Scholar 

  30. Fujitani Y, Kasai K, Ohtani S, Nishimura K, Yamada M, Utsumi K. Effect of oxygen concentration and free radicals on in vitro development of in vitro-produced bovine embryos. J Anim Sci 1997;75:483–9.

    PubMed  CAS  Google Scholar 

  31. Lonergan P, O’Kearney-Flynn M, Boland MP. Effect of protein supplementation and presence of an antioxidant on the development of bovine zygotes in synthetic oviduct fluid medium under high or low oxygen tension. Theriogenology 1999;51:1565–76. doi:10.1016/S0093-691X(99)00099-0.

    Article  PubMed  CAS  Google Scholar 

  32. Betterbed B, Wright RW Jr. Development of one-cell ovine embryos in two culture media under two gas atmospheres. Theriogenology 1985;23:547–53. doi:10.1016/0093-691X(85)90026-3.

    Article  PubMed  CAS  Google Scholar 

  33. Wang WL, Jiang HS, Lu KH, Gordon I, Polge C. The effect of gas phase on the in vitro development of bovine embryos derived from in vitro maturation and fertilization of ovarian oocytes. Theriogenology 1992;37:320. doi:10.1016/0093-691X(92)90389-9.

    Article  Google Scholar 

  34. Nagao Y, Saeki K, Hoshi M, Kainuma H. Effects of oxygen concentration and oviductal epithelial tissue on the development of in vitro matured and fertilized bovine oocytes cultured in protein-free medium. Theriogenology 1994;41:681–7. doi:10.1016/0093-691X(94)90177-K.

    Article  PubMed  CAS  Google Scholar 

  35. Guérin P, El Mouatassim S, Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 2001;7:175–89. doi:10.1093/humupd/7.2.175.

    Article  PubMed  Google Scholar 

  36. Schreck R, Baeuerle PA. A role for oxygen radicals as second messengers. Trends Cell Biol 1991;1:39–42. doi:10.1016/0962-8924(91)90072-H.

    Article  PubMed  CAS  Google Scholar 

  37. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000;203:1253–63.

    PubMed  CAS  Google Scholar 

  38. Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 1996;24:1028–32.

    PubMed  CAS  Google Scholar 

  39. Nose K. Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull 2000;23:897–903.

    PubMed  CAS  Google Scholar 

  40. Boni R, Sangella L, Dale B, Roviello S, Di Palo R, Barbieri V. Maturazione in vitro di oociti bufalini: indagine ultrastrutturale. Acta Med Vet (Napoli) 1992;38:153–61.

    Google Scholar 

  41. Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahçeci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod Biomed 2004;9:409–17.

    Article  CAS  Google Scholar 

  42. Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 1990;109:501–7.

    PubMed  CAS  Google Scholar 

  43. Wales RG. Maturation of the mammalian embryo: biochemical aspects. Biol Reprod 1975;12:66–81. doi:10.1095/biolreprod12.1.66.

    Article  PubMed  CAS  Google Scholar 

  44. Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update 1995;1:63–72. doi:10.1093/humupd/1.1.63.

    Article  PubMed  CAS  Google Scholar 

  45. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 1996;106:299–306. doi:10.1530/jrf.0.1060299.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson JG, Partridge RJ, Houghton FD, Kennedy CJ, Pullar D, Leese HJ. Oxygen consumption by Day 7 bovine blastocysts: determination of ATP production. Anim Reprod Sci 1996;43:241–7. doi:10.1016/0378-4320(96)01477-7.

    Article  CAS  Google Scholar 

  47. Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction 2002;123:479–86. doi:10.1530/rep.0.1230479.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The technical expertise provided by S. Yuvaraj, Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Chennai and N. Rajesh, Huclin Research ltd, Ticel Biopark, Chennai are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Valivittan.

Additional information

Capsule Buffalo embryos are prone to oxidative stress due to high lipid content; supplementation of vitaminE enhanced their developmental competence by protecting them from oxidative stress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiyagarajan, B., Valivittan, K. Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J Assist Reprod Genet 26, 217–225 (2009). https://doi.org/10.1007/s10815-009-9302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9302-1

Keywords

Navigation