Skip to main content

Advertisement

Log in

Protective potential of SCF for mice preimplantation embryos cultured in vitro in suboptimal conditions

  • Animal Experimentation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To examine the effect of stem cell factor (SCF) to embryos exposed to detrimental factors.

Methods

Mice embryos cultured in control medium or Exp.1. with FasL or FasL+SCF Exp.2. with hydrogen peroxide (HP) or HP+SCF; Exp.3. frozen–thawed and cultured with or without SCF. Immunohistochemistry for Fas and c-kit receptors was performed in blastocysts. Blastocyst rates, total numbers of blastocyst cells (TB) and inner cell mass cell counts (ICM) were determined.

Results

Immunohistochemical studies revealed expression of both Fas and c-kit in blastocyst cells. Exp.1. Significantly more blastocysts were found in control when compared to FasL group and to FasL+SCF group. TB and ICM counts in control and FasL+SCF group were significantly higher comparing to FasL group. Exp.2. We found significant differences between three groups in all three evaluated parameters. The highest blastocyst rates, TB and ICM counts were found in control, lower in HP+SCF group and the worst in HP group. Exp.3. No significant differences in TB and ICM counts were found. More embryos formed blastocyst in control than in two cryopreserved groups. Blastocyst rates did not differ between two cryopreserved groups.

Conclusion

SCF may improve culture of embryos exposed to unfavorable milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bavister BD. Interactions between embryos and the culture milieu. Theriogenology 2000;53:619–26. doi:10.1016/S0093-691X(99)00262-9.

    Article  PubMed  CAS  Google Scholar 

  2. Sargent IL, Martin KL, Barlow DH. The use of recombinant growth factors to promote human embryo development in serum-free medium. Hum Reprod 1998;13(suppl 4):239–48.

    PubMed  CAS  Google Scholar 

  3. Nasr Esfahani MH, Winston NJ, Johnson MH. Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil 1992;96:219–31. doi:10.1530/jrf.0.0960219.

    PubMed  CAS  Google Scholar 

  4. Pampfer S. Apoptosis in rodent periimplantation embryos: differential susceptibility of inner cell mass and trophoectoderm cell lineages—a review. Placenta 2000;21(suppl A):3–10. doi:10.1053/plac.1999.0519.

    Article  Google Scholar 

  5. Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med 1993;15:69–75. doi:10.1016/0891-5849(93)90126-F.

    Article  PubMed  CAS  Google Scholar 

  6. Ahn HJ, Sohn IP, Kwon HC, Jo do H, Park YD, Min CK. Characteristics of the cell membrane fluidity, actin fibers, and mitochondrial dysfunctions of frozen–thawed two-cell mouse embryos. Mol Reprod Dev 2002;61:466–76. doi:10.1002/mrd.10040.

    Article  PubMed  CAS  Google Scholar 

  7. Marti M, Grossmann M, Santalo J, Egozcue J, Ponsa M. Plasma membrane and cytocortex alterations in frozen/thawed mouse embryos deprived of the zona pellucida. J Exp Zool 1998;280:38. doi:10.1002/(SICI)1097-010X(19980101)280:1<38::AID-JEZ5>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  8. Sohn IP, Ahn HJ, Park DW, Gye MC, Jo do H, Kim SY, Min CK, Kwon HC. Amelioration of mitochondrial dysfunction and apoptosis of two-cell mouse embryos after freezing and thawing by the high frequency liquid nitrogen infusion. Mol Cells 2002;13:272–80.

    PubMed  CAS  Google Scholar 

  9. Kawamura K, Fukuda J, Kodama H, Kumagai J, Kumagai A, Tanaka T. Expression of Fas and Fas ligand mRNA in rat and human preimplantation embryos. Mol Hum Reprod 2001;7:431–6. doi:10.1093/molehr/7.5.431.

    Article  PubMed  CAS  Google Scholar 

  10. Zou GM, Reznikoff-Etievant MF, Leon A, Verge V, Hirsch F, Milliez J. Fas-mediated apoptosis of mouse embryo stem cells: its role during embryonic development. Am J Reprod Immunol 2000;43:240–8. doi:10.1111/j.8755-8920.2000.430409.x.

    Article  PubMed  CAS  Google Scholar 

  11. French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, et al. Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 1996;133:335–43. doi:10.1083/jcb.133.2.335.

    Article  PubMed  CAS  Google Scholar 

  12. Suda T, Nagata S. Purification and characterization of the FasLigand that induces apoptosis. J Exp Med 1994;179:873–9. doi:10.1084/jem.179.3.873.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76:969–76. doi:10.1016/0092-8674(94)90375-1.

    Article  PubMed  CAS  Google Scholar 

  14. Oda A, Nishio M, Sawada K. Stem cell factor regulation of Fas-mediated apoptosis of human erythroid precursor cells. J Hematother Stem Cell Res 2001;10:595–600. doi:10.1089/152581601753193805.

    Article  PubMed  CAS  Google Scholar 

  15. Mori T, Xu JP, Mori E, Sato E, Saito S, Guo MW. Expression of Fas–Fas ligand system associated with atresia through apoptosis in murine ovary. Horm Res 1997;48(Suppl 3):11–9.

    PubMed  CAS  Google Scholar 

  16. Kim WU, Kwok SK, Hong KH, Yoo SA, Kong JS, Choe J, et al. Soluble Fas ligand inhibits angiogenesis in rheumatoid arthritis. Arthritis Res Ther 2007;9:42. doi:10.1186/ar2181.

    Article  CAS  Google Scholar 

  17. Cui LY, Liu SL, Ding Y, Huang DS, Ma RF, Huang WG, et al. IL-1beta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharmacol Sin 2007;28:1671–6. doi:10.1111/j.1745-7254.2007.00642.x.

    Article  PubMed  CAS  Google Scholar 

  18. Georgantas RW 3rd, Bohana-Kashtan O, Civin CI. Ex vivo soluble fas ligand treatment of donor cells to selectively reduce murine acute graft versus host disease. Transplantation 2006;82:47147–8. doi:10.1097/01.tp.0000229435.58898.c5.

    Article  CAS  Google Scholar 

  19. De Felici M. Regulation of primordial germ cell development in the mouse. Int J Dev Biol 2000;44:575–80.

    PubMed  Google Scholar 

  20. Dolci S, Pesce M, De Felici M. Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Mol Reprod Dev 1993;35:134–9. doi:10.1002/mrd.1080350206.

    Article  PubMed  CAS  Google Scholar 

  21. Ashman LK. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 1999;31:1037–51. doi:10.1016/S1357-2725(99)00076-X.

    Article  PubMed  CAS  Google Scholar 

  22. Smith MA, Pallister CJ, Smith JG. Stem cell factor: biology and relevance to clinical practice. Acta Haematol 2001;105:143–50. doi:10.1159/000046556.

    Article  PubMed  CAS  Google Scholar 

  23. Keller JR, Ortiz M, Ruscetti FW. Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division. Blood 1995;86:1757–64.

    PubMed  CAS  Google Scholar 

  24. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod 1997;56:1088–96. doi:10.1095/biolreprod56.5.1088.

    Article  PubMed  CAS  Google Scholar 

  25. Herrler A, Krusche CA, Beier HM. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod 1998;59:1302. doi:10.1095/biolreprod59.6.1302.

    Article  PubMed  CAS  Google Scholar 

  26. Kurzawa R, Głąbowski W, Wenda-Różewicka L. Evaluation of mice preimplantation embryos cultured in media enriched with insulin-like growth factors I and II, epidermal growth factor and tumor necrosis factor alpha. Folia Histochem Cytobiol 2001;39:245–51.

    PubMed  CAS  Google Scholar 

  27. Martin KL, Barlow DH, Sargent IL. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum Reprod 1998;13:1645–52. doi:10.1093/humrep/13.6.1645.

    Article  PubMed  CAS  Google Scholar 

  28. Glabowski W, Kurzawa R, Wiszniewska B, Baczkowski T, Marchlewicz M, Brelik P. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha. Reprod Biol 2005;5:83–99.

    PubMed  Google Scholar 

  29. Kurzawa R, Glabowski W, Baczkowski T, Wiszniewska B, Marchlewicz M. Growth factors protect in vitro cultured embryos from the consequences of oxidative stress. Zygote 2004;12:231–40. doi:10.1017/S0967199404002783.

    Article  PubMed  CAS  Google Scholar 

  30. De la Fuente R, King WA. Use of a chemically defined system for the direct comparison of inner cell mass and trophoectoderm distribution in murine, porcine and bovine embryos. Zygote 1997;5:309–21.

    Article  PubMed  Google Scholar 

  31. Barmat LI, Worrilow KC, Paynton BV. Growth factor expression by human oviduct and buffalo rat liver coculture cells. Fertil Steril 1997;67:775–9. doi:10.1016/S0015-0282(97)81382-9.

    Article  PubMed  CAS  Google Scholar 

  32. Kurachi H, Morishige K, Imai T, Homma H, Masumoto N, Yoshimoto Y, et al. Expression of epidermal growth factor and transforming growth factor alpha in fallopian tube epithelium and their role in embryogenesis. Horm Res 1994;41(Suppl 1):48–54.

    Article  PubMed  CAS  Google Scholar 

  33. Sunder S, Lenton EA. Endocrinology of the peri-implantation period. Bailliere’s best practice and research. Clin Obstet Gynecol 2000;14:789–800.

    CAS  Google Scholar 

  34. Brown JJ, Whittingham DG. The dynamic provision of different energy substrates improves development of one-cell random-bred mouse embryos in vitro. J Reprod Fertil 1992;95:503–11. doi:10.1530/jrf.0.0950503.

    Article  PubMed  CAS  Google Scholar 

  35. Roh S, Choi YJ, Min BM. A novel microtube culture system that enhances the in vitro development of parthenogenetic murine embryos. Theriogenology 2008;69:262–7. doi:10.1016/j.theriogenology.2007.09.015.

    Article  PubMed  CAS  Google Scholar 

  36. Hentemann M, Bertheussen K. New media for culture to blastocyst. Fertil Steril. 2008; in press (Mar):3.

  37. O’Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod 1997;56:229–37. doi:10.1095/biolreprod56.1.229.

    Article  PubMed  CAS  Google Scholar 

  38. Narula A, Taneja M, Totey SM. Morphological development, cell number, and allocation of cells to trophoectoderm and inner cell mass of in vitro fertilized and parthenogenetically developed buffalo embryos: the effect of IGF-I. Mol Reprod Dev 1996;44:343–51. doi:10.1002/(SICI)1098-2795(199607)44:3<343::AID-MRD8>3.0.CO;2-M.

    Article  PubMed  CAS  Google Scholar 

  39. Arceci RJ, Pampfer S, Pollard JW. Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev Biol 1992;151:1–8. doi:10.1016/0012-1606(92)90207-W.

    Article  PubMed  CAS  Google Scholar 

  40. Sharkey AM, Dellow K, Blayney M, Macnamee M, Charnock-Jones S, Smith SK. Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol Reprod 1995;53:974–81. doi:10.1095/biolreprod53.4.974.

    Article  PubMed  CAS  Google Scholar 

  41. Taniguchi F, Harada T, Nara M, Deura I, Mitsunari M, Terakawa N. Coculture with a human granulosa cell line enhanced the development of murine preimplantation embryos via SCF/c-kit system. J Assist Reprod Genet 2004;21:223–8. doi:10.1023/B:JARG.0000040238.61586.86.

    Article  PubMed  Google Scholar 

  42. Bashamboo A, Taylor AH, Samuel K, Panthier JJ, Whetton AD, Forrester LM. The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. J Cell Sci 2006;119:3039–46. doi:10.1242/jcs.03038.

    Article  PubMed  CAS  Google Scholar 

  43. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–51. doi:10.1016/0092-8674(93)80066-N.

    Article  PubMed  CAS  Google Scholar 

  44. Butke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7–10. doi:10.1016/0167-5699(94)90018-3.

    Article  Google Scholar 

  45. Kim DK, Cho ES, Um HD. Caspase-dependent and independent events in apoptosis induced by hydrogen peroxide. Exp Cell Res 2000;257:82–8. doi:10.1006/excr.2000.4868.

    Article  PubMed  CAS  Google Scholar 

  46. Harvey MB, Arcellana-Panlilio MY, Zhang X, Schultz GA, Watson AJ. Expression of genes encoding antioxidant enzymes in preimplantation mouse and caw embryos and primary oviduct cultures employed for embryo coculture. Biol Reprod 1995;53:532–40. doi:10.1095/biolreprod53.3.532.

    Article  PubMed  CAS  Google Scholar 

  47. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive species in the pre-implantation embryo and its surroundings. Hum Reprod Updat 2002;7:175–89. doi:10.1093/humupd/7.2.175.

    Article  Google Scholar 

  48. Bedaiwy MA, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril 2004;82:593–600. doi:10.1016/j.fertnstert.2004.02.121.

    Article  PubMed  CAS  Google Scholar 

  49. Orsi NM, Leese HJ. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 2001;59:44–53. doi:10.1002/mrd.1006.

    Article  PubMed  CAS  Google Scholar 

  50. Desai N, Lawson J, Goldfarb J. Assessment of growth factor effects on post-thaw development of cryopreserved mouse morulae to the blastocyst stage. Hum Reprod 2000;15:410. doi:10.1093/humrep/15.2.410.

    Article  PubMed  CAS  Google Scholar 

  51. Hsieh YY, Tsai HD, Chang CC, Hsu LW, Chang SC, Lo HY. Prolonged culture of human cryopreserved embryos with recombinant human leukemia inhibitory factor. J Assist Reprod Genet 2000;17:131–4. doi:10.1023/A:1009426303742.

    Article  PubMed  CAS  Google Scholar 

  52. Byrne AT, Southgate J, Brison DR, Leese HJ. Effects of insulin-like growth factors I and II on tumour-necrosis-factor-alpha-induced apoptosis in early murine embryos. Reprod Fertil Dev 2002;14:79–83. doi:10.1071/RD01015.

    Article  PubMed  CAS  Google Scholar 

  53. Spanos S, Becker DL, Winston RM, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod 2000;63:1413–20. doi:10.1095/biolreprod63.5.1413.

    Article  PubMed  CAS  Google Scholar 

  54. Lee JW, Gersuk GM, Kiener PA, Beckham C, Ledbetter JA, Deeg HJ. HLA-DR-triggered inhibition of hemopoiesis involves Fas/Fas ligand interactions and is prevented by c-kit ligand. J Immunol 1997;159:3211–19.

    PubMed  CAS  Google Scholar 

  55. Cohen GM. Caspases: the executioners. Biochem J 1997;326:1–16.

    PubMed  CAS  Google Scholar 

  56. Mignotte B, Vayssiere JL. Mitochondria and apoptosis. Eur J Biochem 1998;252:1–15. doi:10.1046/j.1432-1327.1998.2520001.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Glabowski.

Additional information

SCF—Stem cell factor has protective potential for mice preimplantation embryos exposed to Fas ligand or hydrogen peroxide but not for embryos that underwent freezing–thawing procedure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glabowski, W., Wiszniewska, B. & Kurzawa, R. Protective potential of SCF for mice preimplantation embryos cultured in vitro in suboptimal conditions. J Assist Reprod Genet 25, 395–402 (2008). https://doi.org/10.1007/s10815-008-9248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9248-8

Keywords

Navigation