Skip to main content
Log in

Paleoenvironmental Reconstruction from Faunal Remains: Ecological Basics and Analytical Assumptions

  • Published:
Journal of Archaeological Research Aims and scope

Abstract

Paleozoologists have long used taxa represented by ancient faunal remains to reconstruct paleoenvironments. Those ancient environments were the selective contexts in which hominin biological and cultural evolution took place. Knowing about those particularistic selective environments and how organisms responded to them is increasingly seen as critically important to identifying both how biota will respond to future (to some degree anthropogenically driven) environmental change, and biological conservation and management applications that will ensure sustainability of ecological resources and services. Reconstructing paleoenvironments requires knowledge of species’ ecological tolerances, geographic ranges, habitats, environments, and niches. It also requires assumptions that extant species had the same ecological tolerances in the past as they do today and that changes in taxonomic composition or abundances reflect environmental change rather than sampling or taphonomic factors. Greater knowledge of ecological processes as well as increased analytical sophistication in paleozoology is providing increasingly rigorous and detailed insights to paleoenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References Cited

  • Ager, D. V. (1979). Paleoecology. In Fairbridge, R. W., and Jablonski, D. (eds.), Encyclopedia of Paleontology, Dowden, Hutchinson and Ross, Stroudsburg, PA, pp. 530–541.

    Chapter  Google Scholar 

  • Allan, R. S. (1948). Geological correlation and paleoecology. Geological Society of America Bulletin 59: 1–10.

    Article  Google Scholar 

  • Alemseged, Z., Bobe, R., and Geraads, D. (2007). Comparability of fossil data and its significance for the interpretation of hominin environments: A case study in the lower Omo Valley, Ethiopia. In Bobe, R., Alemseged, Z., and Behrensmeyer, A. K. (eds.), Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence, Springer, Dordrecht, The Netherlands, pp. 159–181.

    Chapter  Google Scholar 

  • Alhajeri, B. H., and Steppan, S. J. (2016). Association between climate and body size in rodents: A phylogenetic test of Bergmann’s rule. Mammalian Biology 81: 219–225.

    Article  Google Scholar 

  • Anderson, E. (1968). Fauna of the Little Box Elder Cave, Converse County, Wyoming: The Carnivora. University of Colorado Studies, Series in Earth Sciences 6: 1–59.

    Google Scholar 

  • Andrews, P. (1990). Owls, Caves and Fossils: Predation, Preservation, and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-sub-Mendip, Somerset, UK, University of Chicago Press, Chicago.

    Google Scholar 

  • Andrews, P. (1995). Mammals as palaeoecological indicators. Acta Zoologica Cracoviensia 38: 59–72.

    Google Scholar 

  • Andrews, P. (1996). Palaeoecology and hominoid palaeoenvironments. Biological Reviews 71: 257–300.

    Article  Google Scholar 

  • Andrews, P. (2006). Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 572–589.

    Article  Google Scholar 

  • Andrews, P., and Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici 51: 269–284.

    Article  Google Scholar 

  • Andrews, P., Lord, J. M., and Evans, E. M. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11: 177–205.

    Article  Google Scholar 

  • Araújo, M. B., and Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.

    Article  Google Scholar 

  • Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modeling 200: 1–19.

    Article  Google Scholar 

  • Avery, D. M. (1982). Micromammals as palaeoenvironmental indicators and an interpretation of the Late Quaternary in the Southern Cape Province, South Africa. Annals of the South African Museum 85: 183–374.

    Google Scholar 

  • Avery, D. M. (1988). Micromammals and paleoenvironmental interpretation in southern Africa. Geoarchaeology 3: 41–52.

    Article  Google Scholar 

  • Avery, D. M. (1990). Holocene climatic change in southern Africa: The contribution of micromammals to its study. South African Journal of Science 86: 407–412.

    Google Scholar 

  • Avery, D. M. (2007). Micromammals as palaeoenvironmental indicators of the southern African Quaternary. Transactions of the Royal Society of South Africa 62: 17–23.

    Article  Google Scholar 

  • Badgley, C. (1986). Counting individuals in mammalian fossil assemblages from fluvial environments. Palaios 1: 328–338.

    Article  Google Scholar 

  • Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology 26: 198–223.

    Article  Google Scholar 

  • Balkwill, D. McC., and Cumbaa, S. L. (1992). A Guide to the Identification of Post-Cranial Bones of Bos taurus and Bison bison, Syllogeus 71, Canadian Museum of Nature, Ottawa.

    Book  Google Scholar 

  • Bañuls-Cardona, S., López-García, J. M., Blain, H.-A., and Salomó, A. C. (2012). Climate and landscape during the Last Glacial Maximum in southwestern Iberia: The small-vertebrate association from the Sala de las Chimeneas, Maltravieso, Extremadura. Comptes Rendus Palevol 11: 31–40.

    Article  Google Scholar 

  • Bañuls-Cardona, S., López-García, J. M., Blain, H.-A., Lozano-Fernández, I., and Cuenca-Bescós, G. (2014). The end of the Last Glacial Maximum in the Iberian Peninsula characterized by small-mammal assemblages. Journal of Iberian Geology 40: 19–27.

    Article  Google Scholar 

  • Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Kahn, I. A., Badgley, C., Hicks, J., and Kelley, J. (2002). Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28 (special issue 3): 1–71.

  • Bate, D. M. (1937). Palaeontology: The fossil fauna of the Wady El-Mughara Caves. In Garrod, D. A., and Bate, D. M., The Stone Age of Mt. Carmel, Volume 1, Excavations at the Wady El-Mughara, Oxford University Press, Oxford, pp. 135–240.

    Google Scholar 

  • Behrensmeyer, A. K. (1982). Time resolution in fluvial vertebrate assemblages. Paleobiology 8: 211–227.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1988). The pull of the recent analogue. Palaios 3: 373.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1991). Terrestrial vertebrate accumulations. In Allison, P. A., and Briggs, D. E. (eds.), Releasing the Data Locked in the Fossil Record, Plenum Press, New York, pp. 291–335.

    Google Scholar 

  • Behrensmeyer, A. K., Bobe, R., and Alemseged, Z. (2007). Approaches to the analysis of faunal change during the East African Pliocene. In Bobe, R., Alemseged, Z., and Behrensmeyer, A. K. (eds.), Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence, Springer, Dordrecht, The Netherlands, pp. 1–24.

    Google Scholar 

  • Behrensmeyer, A. K., and Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic modes. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.), Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals, University of Chicago Press, Chicago, pp. 15–136.

    Google Scholar 

  • Bell, C. J., Gauthier, J. A., and Bever, G. S. (2010). Covert biases, circularity, and apomorphies: A critical look at the North American Quaternary herpetofaunal stability hypothesis. Quaternary International 217: 30–36.

    Article  Google Scholar 

  • Belyea, L. R. (2007). Revealing the emperor’s new clothes: Niche-based palaeoenvironmental reconstruction in the light of recent ecological theory. The Holocene 17: 683–688.

    Article  Google Scholar 

  • Binford, L. R. (1981). Behavioral archaeology and the “Pompeii premise.” Journal of Anthropological Research 37: 195–208.

    Article  Google Scholar 

  • Birch, L. C. (1957). The role of weather in determining the distribution and abundance of animals. Cold Spring Harbor Symposium on Quantitative Biology 22: 203–218.

    Article  Google Scholar 

  • Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E. (2010). Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. Open Ecology Journal 3: 68–110.

    Article  Google Scholar 

  • Blaauw, M. (2012). Out of tune: The dangers of aligning proxy archives. Quaternary Science Reviews 36: 38–49.

    Article  Google Scholar 

  • Blois, J. L., McGuire, J. L., and Hadly, E. A. (2010). Small mammal diversity loss in response to Late-Pleistocene climatic change. Nature 465: 771–774.

    Article  Google Scholar 

  • Bobe, R., Alemseged, Z., and Behrensmeyer, A. K. (eds.) (2007). Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Bobe, R., and Eck, G. E. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology 27 (special issue 2): 1–48.

  • Bökönyi, S. (1982). The climatic interpretation of macrofaunal assemblages in the Near East. In Bintliff, J. L., and Van Zeist, W. (eds.), Palaeoclimates, Palaeoenvironments and Human Communities in the Eastern Mediterranean Region in Later Prehistory, BAR International Series 133, Archaeopress, Oxford, pp. 149–163.

    Google Scholar 

  • Bottjer, D. J., Cambell, K. A., Schubert, J. K., and Droser, M. I. (1995). Palaeoecological models, non-uniformitarianism, and tracking the changing ecology of the past. In Bosence, D. W., and Allison, P. A. (eds.), Marine Palaeoenvironmental Analysis from Fossils, Special Paper No. 83, Geological Society of America, Boulder, CO, pp. 7–26.

  • Brothwell, D., and Jones, R. (1978). The relevance of small mammal studies to archaeology. In Brothwell, D. R., Thomas, K. D., and Clutton-Brock, J. (eds.), Research Problems in Zooarchaeology, Occasional Publication No. 3, Institute of Archaeology, University of London, London, pp. 47–57.

  • Broughton, J. M., and Cannon, M. D. (eds.). (2010). Evolutionary Ecology and Archaeology: Applications to Problems in Human Evolution and Prehistory, University of Utah Press, Salt Lake City.

    Google Scholar 

  • Brown, B. (1908). The Conrad Fissure, a Pleistocene bone deposit in northern Arkansas: With descriptions of two new genera and twenty new species of mammals. American Museum of Natural History Memoir 9: 155–208.

    Google Scholar 

  • Brown, J. H., and Lomolino, M. V. (1998). Biogeography, 2nd ed., Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Burnham, R. J. (2008). Hide and go seek: What does presence mean in the fossil record. Annals of the Missouri Botanical Garden 95: 51–71.

    Article  Google Scholar 

  • Burt, W. H. (1958). The history and affinities of the recent land mammals of western North America. In Hubbs, C. L. (ed.), Zoogeography, Publication 51, American Association for the Advancement of Science, Washington, DC, pp. 131–154.

  • Byerly, R. M. (2007). Palaeopathology in Late Pleistocene and Early Holocene central Plains bison: Dental enamel hypoplasia, fluoride toxicosis and the archaeological record. Journal of Archaeological Science 34: 1847–1858.

    Article  Google Scholar 

  • Calaby, J. H. (1971). Man, fauna, and climate in aboriginal Australia. In Mulvaney, D. J., and Golson, J. (eds.), Aboriginal Man and Environment in Australia, Australian National University Press, Canberra, pp. 80–93.

    Google Scholar 

  • Caporale, S. S., and Ungar, P. S. (2016). Rodent incisor microwear as a proxy for ecological reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 446: 225–233.

    Article  Google Scholar 

  • Casanovas-Vilar, I., and Agustí, J. (2007). Ecogeographical stability and climate forcing in the Late Miocene (Vallesian) rodent record of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 248: 169–189.

    Article  Google Scholar 

  • Case, E. C. (1936). Paleoecology of the vertebrates. In Twenhofel, W. H. (ed.), Report of the Committee on Paleoecology, 19351936, National Research Council, Division of Geology and Geography, Washington, DC, pp. 10–21.

    Google Scholar 

  • Castaños, J., Castaños, P., Murelaga, X., Alonso-Olazabal, A., Ortega, L. A., and Zuluaga, M. C. (2014). Osteometric analysis of the scapula and humerus of Rangifer tarandus and Cervus elaphus: A contribution to the discrimination of Late Pleistocene cervids. Acta Palaeontologica Polonica 59: 779–786.

    Google Scholar 

  • Cerling, T. E., Andanje, S. A., Blumenthal, S. A., Brown, F. H., Chritz, K. L., Harris, J. M., Hart, J. A., Kirera, F. M., Kaleme, P., Leakey, L. N., Leakey, M. G., Levin, N. E., Manthi, F. K., Passey, B. H., and Uno, K. T. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences USA 112: 11467–11472.

    Article  Google Scholar 

  • Chaline, J. (1977). Rodents, evolution, and prehistory. Endeavor n.s. 1(2): 44–51.

  • Chapin, F. S., III, and Starfield, A. M. (1997). Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Climatic Change 35: 449–461.

    Article  Google Scholar 

  • Cheatum, E. P., and Allen, D. (1964). Limitations in paleoecological reconstruction utilizing data from fossil non-marine molluscs. In Hester, J. J., and Schoenwetter, J. (eds.), The Reconstruction of Past Environments: Proceedings, Publication No. 3, Fort Burgwin Research Center, Taos, NM, pp. 31–33.

  • Churcher, C. S., and Wilson, M. C. (1990). Methods in Quaternary ecology #12: Vertebrates. Geoscience Canada 17: 59–78.

    Google Scholar 

  • Cleland, C. E. (1966). The Prehistoric Animal Ecology and Ethnozoology of the Upper Great Lakes Region, Anthropological Papers No. 29, Museum of Anthropology, University of Michigan, Ann Arbor.

  • Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology 24: 252–284.

    Article  Google Scholar 

  • Clements, F. E., and Shelford, V. E. (1939). Bio-Ecolog,. Wiley, New York.

    Google Scholar 

  • Colwell, R. K., and Rangel, T. F. (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences USA 106 (supplement 2): 19651–19658.

    Article  Google Scholar 

  • Coope, G. R. (1986). Coleoptera analysis. In Berglund, B. E. (ed.), Handbook of Palaeoecology and Palaeohydrology, John Wiley and Sons, Chichester, pp. 703–713.

    Google Scholar 

  • Craig, G. Y. (1961). Palaeozoological evidence of climate: (2) Invertebrates. In Nairen, A. E. (ed.), Descriptive Palaeoclimatology, Interscience Publishers, New York, pp. 207–226.

    Google Scholar 

  • Cutler, A. H., Behrensmeyer, A. K., and Chapman, R. E. (1999). Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 359–372.

    Article  Google Scholar 

  • Czaplewski, N. J., Mead, J. I., Bell, C. J., Peachey, W. D., and Ku, T.-L. (1999). Papago Springs Cave Revisited, part II: Vertebrate Paleofauna, Occasional Papers 5, Oklahoma Museum of Natural History, University of Oklahoma, Norman.

  • Daams, R., van der Meulen, A. J., Peláez-Campomanes, P., and Alvarez Sierra, M. A. (1999). Trends in rodent assemblages from the Aragonian (early–middle Miocene) of the Calatayud-Daroca Basin, Aragón, Spain. In Agustí, J., Rook, L., and Andrews, P. (eds.), Hominoid Evolution and Climatic Change in Europe, Cambridge University Press, Cambridge, pp. 127–139.

    Chapter  Google Scholar 

  • Dalquest, W. W. (1965). New Pleistocene formation and local fauna from Hardeman County, Texas. Journal of Paleontology 39: 63–79.

    Google Scholar 

  • Daly, P. (1969). Approaches to faunal analysis in archaeology. American Antiquity 34: 146–153.

    Article  Google Scholar 

  • Damuth, J. D. (1992). Taxon-free characterization of animal communities. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals, University of Chicago Press, Chicago, pp. 183–203.

    Google Scholar 

  • Damuth, J. D., and Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews 86: 733–758.

    Article  Google Scholar 

  • Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London.

    Book  Google Scholar 

  • Davis, M. B. (1976). Pleistocene biogeography of temperate deciduous forests. In West, R. C., and Haag, W. G. (eds.), Ecology of the Pleistocene: A Symposium, Geoscience and Man 13, Louisiana State University, Baton Rouge, pp. 13–26.

    Google Scholar 

  • Davis, M. B. (1981). Quaternary history and the stability of deciduous forests. In West, D. C., Shugart, H. H., and Botkin, D. B. (eds.), Forest Succession: Concepts and Application, Springer-Verlag, New York, pp. 132–153.

    Chapter  Google Scholar 

  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science 332: 53–58.

    Article  Google Scholar 

  • DeSantis, L. R., Tracy, R. A., Koontz, C. S., Roseberry, J. C., and Velasco, M. C. (2012). Mammalian niche conservation through deep time. PLoS One 7: e35624.

    Article  Google Scholar 

  • Dietl, G. P., and Flessa, K. W. (eds.) (2009). Conservation Paleobiology: Using the Past to Manage for the Future, Papers Vol. 15, Paleontological Society, Boulder, CO.

    Google Scholar 

  • Dietl, G. P., Kidwell, S. M., Brenner, M., Burney, D. A., Flessa, K. W., Jackson, S. T., and Koch, P. L. (2015). Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annual Review of Earth and Planetary Sciences 43: 79–103.

    Article  Google Scholar 

  • DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., and Bobe, R. (2004). Long-term stasis in ecological assemblages: Evidence from the fossil record. Annual Review of Ecology, Evolution, and Systematics 35: 285–322.

    Article  Google Scholar 

  • Dodson, P. (1973). The significance of small bones in paleoecological interpretation. University of Wyoming Contributions to Geology 12: 15–19.

    Google Scholar 

  • Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences 4: 47–59.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., and Musiba, C. M. (2010). How accurate are paleoecological reconstructions of early paleontological and archaeological sites? Evolutionary Biology 37: 128–140.

    Article  Google Scholar 

  • Dorf, E. (1959). Climatic changes of the past and present. Contributions from the Museum of Paleontology 13: 181–210 (University of Michigan, Ann Arbor).

  • Driver, J. C. (1988). Late Pleistocene and Holocene vertebrates and palaeoenvironments from Charlie Lake Cave, northeast British Columbia. Canadian Journal of Earth Sciences 25: 1545–1553.

    Article  Google Scholar 

  • Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea 9: 35–47.

    Google Scholar 

  • Driver, J. C. (2001). Paleoecological and archaeological implications of the Charlie Lake Cave fauna, British Columbia. In Gerlach, S. C., and Murray, M. S. (eds.), People and Wildlife in Northern North America: Essays in Honor of R. Dale Guthrie, BAR International Series 944, Archaeopress, Oxford, pp. 13–22.

  • Driver, J. C. (2011). Identification, classification and zooarchaeology. Ethnobiology Letters 2: 19–39.

    Article  Google Scholar 

  • Eastham, L. C., Feranec, R. S., and Begun, D. R. (2016). Stable isotopes show resource partitioning among the early Late Miocene herbivore community at Rudabánya II: Paleoenvironmental implications for the hominoid, Rudapithecus hungaricus. Palaeogeography, Palaeoclimatology, Palaeoecology 454: 161–174.

    Article  Google Scholar 

  • Eckert, C. G., Samis, K. E., and Lougheed, S. C. (2008). Genetic variation across species’ geographical ranges: The central-margin hypothesis and beyond. Molecular Ecology 17: 1170–1188.

    Article  Google Scholar 

  • Elith, J., and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697.

    Article  Google Scholar 

  • Elton, C. S. (1927). Animal Ecology, Sedgwick and Jackson, London.

    Google Scholar 

  • Emery, K. F., and Thornton, E. K. (2012). Using animal remains to reconstruct ancient landscapes and climate in central and southern Maya Lowlands. In Lefevre, C. (ed.), Proceedings of the General Session of the 11th International Council for Archaeozoology Conference, BAR International Series 2354, Archaeopress, Oxford, pp. 203–225.

  • Emery, K. F., and Thornton, E. K. (2014). Tracking climate change in the ancient Maya world through zooarchaeological habitat analysis. In Iannone, G. (ed.), The Great Maya Droughts in Cultural Context: Case Studies in Resilience and Vulnerability, University Press of Colorado, Boulder, pp. 301–331.

    Google Scholar 

  • Emslie, S. D. (1982). Osteological identification of long-eared and short-eared owls. American Antiquity 47: 155–157.

    Article  Google Scholar 

  • Erasmus, B. F., Van Jaarswel, A. S., Chown, S. L., Kshatriya, M., and Wessels, K. J. (2002). Vulnerability of South African animal taxa to climate change. Global Change Biology 8: 679–693.

    Article  Google Scholar 

  • Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., Scheidegger, C., Stenseth, N. C., and Fortelius, M. (2010). Ecometrics: The traits that bind the past and present together. Integrative Zoology 5: 88–101.

    Article  Google Scholar 

  • Ervynck, A. (1999). Possibilities and limitations of the use of archaeozoological data in biogeographical analysis: A review with examples from the Benelux region. Belgian Journal of Zoology 129: 125–138.

    Google Scholar 

  • Escarguel, G., Fara, E., Brayard, A., and Legendre, S. (2011). Biodiversity is not (and never has been) a bed of roses! Comptes Rendus Biologies 334: 351–359.

    Article  Google Scholar 

  • Estes, J. A. (1996). Predators and ecosystem management. Wildlife Society Bulletin 24: 390–396.

    Google Scholar 

  • Estes, R., and Berberian, P. (1970). Paleoecology of a Late Cretaceous vertebrate community from Montana. Breviora 343: 1–35.

    Google Scholar 

  • Evans, E. M., van Couvering, J. H., and Andrews, P. (1981). Palaeoecology of Miocene sites in western Kenya. Journal of Human Evolution 10: 35–48.

    Article  Google Scholar 

  • Evans, J. G. (1978). An Introduction to Environmental Archaeology, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Faith, J. T. (2011). Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. Quaternary Research 75: 159–165.

    Article  Google Scholar 

  • Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. Journal of Human Evolution 65: 715–730.

    Article  Google Scholar 

  • Faith, J. T., and Behrensmeyer, A. K. (2013). Climate change and faunal turnover: Testing the mechanics of the turnover-pulse hypothesis with South African fossil data. Paleobiology 39: 609–627.

    Article  Google Scholar 

  • Faith, J. T., Patterson, B. D., Blegen, N., O’Neill, C. J., Marean, C. W., Peppe, D. J., and Tryon, C. A. (2016). Size variation in Tachyoryctes splendens (East African mole-rat) and its implications for Late Quaternary temperature change in equatorial East Africa. Quaternary Science Reviews 140: 39–48.

    Article  Google Scholar 

  • Faith, J. T., Potts, R., Plummer, T. W., Bishop, L. C., Marean, C. W., and Tryon, C. A. (2012). New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) from Lainyamok, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 361–362: 84–93.

    Article  Google Scholar 

  • Falk, C. R., and Semken, H. A., Jr. (1990). Vertebrate paleoecology and procurement at the Rainbow site. In Benn, D. W. (ed.), Woodland Cultures on the Western Prairies: The Rainbow Site Investigations, Report 18, Office of the State Archaeologist, University of Iowa, Iowa City, pp. 145–167.

  • Falk, C. R., and Semken, H. A., Jr. (1998). Taphonomy of rodent and insectivore remains in North American archaeological sites: Selected examples and interpretations. In Saunders, J. J., Styles, B. W., and Baryshnikov, G. F. (eds.), Quaternary Paleozoology in the Northern Hemisphere, Scientific Papers Vol. 27, Illinois State Museum, Springfield, pp. 285–321.

  • Faunmap Working Group. (1996). Spatial response of mammals to Late Quaternary environmental fluctuations. Science 272: 1601–1606.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and Humphrey, L. (1998). Taphonomy and paleoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution 34: 137–172.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Scott, L., and Andrews, P. (2011). Taphonomy in palaeoecological interpretations. Quaternary Science Reviews 30: 1296–1302.

    Article  Google Scholar 

  • Findley, J. S. (1964). Paleoecological reconstruction: Vertebrate limitations. In Hester, J. J., and Schoenwetter, J. (eds.), The Reconstruction of Past Environments: Proceedings, Publication No. 3, Fort Burgwin Research Center, Taos, NM, pp. 23–25.

  • Findley, J. S., and Jones, C. J. (1962). Distribution and variation of voles of the genus Microtus in New Mexico and adjacent areas. Journal of Mammalogy 43: 154–166.

    Article  Google Scholar 

  • Flannery, K. V. (1967). Vertebrate fauna and hunting patterns. In Byers, D. S. (ed.), The Prehistory of the Tehuacan Valley, Volume 1: Environment and Subsistence, University of Texas Press, Austin, pp. 132–177.

    Google Scholar 

  • Fortelius, M., Eronen, J., Liu, L., Pushkina, D., Tesakov, A., Vislobokova, I., and Zhang, Z. (2006). Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 238: 219–227.

    Article  Google Scholar 

  • Franklin, J., Potts, R., Fisher, E. C., Cowling, R. M., and Marean, C. W. (2015). Paleodistribution modeling in archaeology and paleoanthropology. Quaternary Science Reviews 110: 1–14.

    Article  Google Scholar 

  • Frazier, M. K. (1977). New records of Neofiber leonardi (Rodentia: Cricetidae) and the paleoecology of the genus. Journal of Mammalogy 58: 368–373.

    Article  Google Scholar 

  • Fukami, T. (2015). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics 46: 1–23.

    Article  Google Scholar 

  • Gamble, C. (1978). Optimising information from studies of faunal remains. In Cherry, J. F., Gamble, C., and Shennan, S. (eds.), Sampling in Contemporary British Archaeology, BAR British Series 50, Archaeopress, Oxford, pp. 321–353.

    Google Scholar 

  • Gandiwa, E. (2013). Top-down and bottom-up control of large herbivore populations: A review of natural and human-induced influences. Tropical Conservation Science 6: 493–505.

    Article  Google Scholar 

  • García-Alix, A., Minwer-Barakat, R., Suárez, E. M., Freudenthal, M., and Martín, J. M. (2008). Late Miocene-Early Pliocene climatic evolution of the Granada Basin (southern Spain) deduced from the paleoecology of the micromammal associations. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 214–225.

    Article  Google Scholar 

  • Gauthreaux, S. A., Jr. (1980). The influences of long-term and short-term climatic changes on the dispersal and migration of organisms. In Gauthreaux, S. A., Jr. (ed.), Animal Migration, Orientation and Navigation, Academic Press, New York, pp. 103–174.

    Google Scholar 

  • George, C. O. (2012). Alternative Approaches to the Identification and Reconstruction of Paleoecology of Quaternary Mammals, Ph.D. dissertation, University of Texas, Austin.

  • George, T. N. (1958). The ecology of fossil animals: I. Organism and environment. Science Progress 46: 677–680.

    Google Scholar 

  • Gidley, J. W., and Gazin, C. L. (1938). The Pleistocene Vertebrate Fauna from Cumberland Cave, Maryland, United States Museum Bulletin 171, Smithsonian Institution, Washington, DC.

    Google Scholar 

  • Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., and Merilä, J. (2008). Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology 17: 167–178.

    Article  Google Scholar 

  • Gifford, D. P. (1981). Taphonomy and paleoecology: A critical review of archaeology’s sister disciplines. In Schiffer, M. B. (ed.), Advances in Archaeological Method and Theory Vol. 4, Academic Press, New York, pp. 365–438.

    Chapter  Google Scholar 

  • Giovas, C. M. (2009). The shell game: Analytic problems in archaeological mollusc quantification. Journal of Archaeological Science 36: 1557–1564.

    Article  Google Scholar 

  • Gleason, H. A. (1926). The individualistic concept of the plant association. American Midland Naturalist 21: 92–110.

    Article  Google Scholar 

  • Gobalet, K. W. (2001). A critique of faunal analysis: Inconsistency among experts in blind tests. Journal of Archaeological Science 28: 377–386.

    Article  Google Scholar 

  • Gómez Cano, A. R., Cantalapiedra, J. L., Álvarez-Sierra, M. A., and Hernández Fernández, M. (2014). A macroecological glance at the structure of Late Miocene rodent assemblages from southwest Europe. Scientific Reports 4: 6557.

    Article  Google Scholar 

  • Gould, S. J. (1965). Is uniformitarianism necessary? American Journal of Science 263: 223–228.

    Article  Google Scholar 

  • Gould, S. J. (1969). Land snail communities and Pleistocene climates in Bermuda: A multivariate analysis of microgastropod diversity. Proceedings of North American Paleontological Convention, Part E: 486–521.

  • Gould, S. J. (1987). Time’s Arrow, Time’s Cycle: Myth and Metaphor in the Discovery of Geological Time, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Graham, R. W. (1976). Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2: 343–350.

    Article  Google Scholar 

  • Graham, R. W. (1981). Preliminary report on Late Pleistocene vertebrates from the Selby and Dutton archeological/paleontological sites, Yuma County, Colorado. University of Wyoming Contributions to Geology 20: 33–56.

    Google Scholar 

  • Graham, R. W. (1985a). Diversity and community structure of the Late Pleistocene mammal fauna of North America. Acta Zoologica Fennica 170: 181–192.

    Google Scholar 

  • Graham, R. W. (1985b). Response of mammalian communities to environmental changes during the Late Quaternary. In Diamond, J., and Case, T. J. (eds.), Community Ecology, Harper and Row, New York, pp. 300–313.

    Google Scholar 

  • Graham, R. W. (1991). Interpreting fossils (review of P. Andrews’ Owls, Caves and Fossils). Science 253: 213–214.

    Article  Google Scholar 

  • Graham, R. W. (2005). Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. In Lieberman, B. S., and Rode, A. L. (eds.), Paleobiogeography: Generating New Insights into the Coevolution of the Earth and Its Biota, Papers Vol. 11, Paleontological Society, Boulder, CO, pp. 141–157.

  • Graham, R. W., and Lundelius, E. L., Jr. (1994). FAUNMAP: A Database Documenting Late Quaternary Distributions of Mammal Species in the United States, Scientific Papers Vol. 25, Illinois State Museum, Springfield.

  • Graham, R. W., and Mead, J. I. (1987). Environmental fluctuations and evolution of mammalian faunas during the last deglaciation in North America. In Ruddiman, W. F., and Wright, H. E., Jr. (eds.), North America and Adjacent Oceans During the Last Deglaciation, The Geology of North America Vol. K-3, Geological Society of America, Boulder, CO, pp. 371–402.

  • Graham, R. W., and Semken, H. A., Jr. (1987). Philosophy and procedures for paleonvironmental studies of Quaternary mammalian faunas. In Graham, R. W., Semken, H. A., Jr., and Graham, M. A. (eds.), Late Quaternary Mammalian Biogeography of the Great Plains and Prairies, Scientific Papers Vol. 22, Illinois State Museum, Springfield, pp. 1–17.

  • Grayson, D. K. (1976). The Nightfire Island avifauna and the Altithermal. In Elston, R. (ed.), Holocene Environmental Change in the Great Basin, Research Paper No. 6, Nevada Archaeological Survey, Reno, pp. 74–102.

  • Grayson, D. K. (1977). A review of the evidence for early Holocene turkeys in the northern Great Basin. American Antiquity 42: 110–114.

    Article  Google Scholar 

  • Grayson, D. K. (1978). Reconstructing mammalian communities: A discussion of Shotwell’s method of paleoecological analysis. Paleobiology 4: 77–81.

    Article  Google Scholar 

  • Grayson, D. K. (1979). Mount Mazama, climatic change, and Fort Rock Basin archaeofaunas. In Sheets, P. D., and Grayson, D. K. (eds.), Volcanic Activity and Human Ecology, Academic Press, New York, pp. 427–457.

    Chapter  Google Scholar 

  • Grayson, D. K. (1981). A critical view of the use of archaeological vertebrates in paleoenvironmental reconstruction. Journal of Ethnobiology 1: 28–38.

    Google Scholar 

  • Grayson, D. K. (1983). The paleontology of Gatecliff Shelter. In Thomas, D. H. (ed.), The Archaeology of Monitor Valley, 2: Gatecliff Shelter, Anthropological Papers 59(1), American Museum of Natural History, New York, pp. 99–126.

  • Grayson, D. K. (1984). Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas, Academic Press, New York.

    Google Scholar 

  • Grayson, D. K. (1991). Late Pleistocene mammalian extinctions in North America: Taxonomy, chronology, and explanations. Journal of World Prehistory 5: 193–231.

    Article  Google Scholar 

  • Grayson, D. K., and Delpech, F. (2005). Pleistocene reindeer and global warming. Conservation Biology 19: 557–562.

    Google Scholar 

  • Grayson, D. K., Livingston, S. D., Rickart, E., and Shaver, M. W., III. (1996). Biogeographic significance of low-elevation records for Neotoma cinerea from the northern Bonneville Basin, Utah. Great Basin Naturalist 56: 191–196.

    Google Scholar 

  • Guilday, J. E. (1962). The Pleistocene local fauna of the Natural Chimneys, Augusta County, Virginia. Carnegie Museum of Natural History Annals 36: 87–122.

    Google Scholar 

  • Guilday, J. E. (1967). Differential extinction during Late-Pleistocene and Recent times. In Martin, P. S., and Wright, H. E., Jr. (eds.), Pleistocene Extinctions: The Search for a Cause, Yale University Press, New Haven, CT, pp. 121–140.

    Google Scholar 

  • Guilday, J. E. (1969). Small mammal remains from the Wasden site (Owl Cave), Bonneville County, Idaho. Tebiwa, Journal of the Idaho State University Museum 12(1): 47–57.

    Google Scholar 

  • Guilday, J. E. (1971). The Pleistocene history of the Appalachian mammal fauna. In Holt, P. C. (ed.), The Distributional History of the Biota of the Southern Appalachians, Part III: Vertebrates, Research Division Monograph 4, Virginia Polytechnic Institute and State University, Blacksburg, pp. 233–262.

    Google Scholar 

  • Guilday, J. E., and Parmalee, P. W. (1972). Quaternary periglacial records of voles of the genus Phenacomys Merriam (Cricetidae: Rodentia). Quaternary Research 2: 170–175.

    Article  Google Scholar 

  • Guo, Q. (2014). Central-marginal population dynamics in species invasions. Frontiers in Ecology and Evolution 2: article 23.

  • Guo, Q., Taper, M., Schoenberger, M., and Brandle, J. (2005). Spatial-temporal population dynamics across species range: From centre to margin. Oikos 108: 47–57.

    Article  Google Scholar 

  • Gustafson, C. E. (1972). Faunal Remains from the Marmes Rockshelter and Related Archaeological Sites in the Columbia Basin, Ph.D. dissertation, Department of Zoology, Washington State University, Pullman.

  • Guthrie, R. D. (1968a). Paleoecology of the large-mammal community in interior Alaska during the Late Pleistocene. American Midland Naturalist 79: 346–363.

    Article  Google Scholar 

  • Guthrie, R. D. (1968b). Paleoecology of a Late Pleistocene small mammal community from interior Alaska. Arctic 21: 223–244.

    Article  Google Scholar 

  • Guthrie, R. D. (1982). Mammals of the mammoth steppe as paleoenvironmental indicators. In Hopkins, D. M., Matthews, J. V., Jr., Schweger, C. E., and Young, S. B. (eds.), Paleoecology of Beringia, Academic Press, New York, pp. 307–326.

    Chapter  Google Scholar 

  • Hadly, E. A. (1999). Fidelity of terrestrial vertebrate fossils to a modern ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 389–409.

    Article  Google Scholar 

  • Hairston, N. G., Smith, F. E., and Slobodkin, L. B. (1960). Community structure, population control, and competition. American Naturalist 44: 421–425.

    Article  Google Scholar 

  • Hampe, A. (2004). Bioclimatic envelope models: What they detect and what they hide. Global Ecology and Biogeography 13: 469–471.

    Article  Google Scholar 

  • Hanley, T. C., and La Pierre, K. J. (eds.) (2015). Trophic Ecology: Bottom-Up or Top-Down Interactions across Aquatic and Terrestrial Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hargrave, L. L., and Emslie, S. D. (1979). Osteological identification of sandhill crane versus turkey. American Antiquity 44: 295–299.

    Article  Google Scholar 

  • Harris, A. H. (1963a). Vertebrate Remains and Past Environmental Reconstruction in the Navajo Reservoir District, Papers in Anthropology No. 11, Museum of New Mexico, Santa Fe.

  • Harris, A. H. (1963b). Ecological Distribution of Some Vertebrates in the San Juan Basin, New Mexico, Papers in Anthropology No. 8, Museum of New Mexico, Santa Fe.

  • Harris, A. H. (1985). Late Pleistocene Vertebrate Paleoecology of the West, University of Texas Press, Austin.

    Google Scholar 

  • Heads, M. (2015). The relationship between biogeography and ecology: Envelopes, models, predictions. Biological Journal of the Linnean Society 115: 456–468.

    Article  Google Scholar 

  • Heisler, L. M., Somers, C. M., and Poulin, R. G. (2014). Rodent populations on the northern Great Plains respond to weather variation at a landscape level. Journal of Mammalogy 95: 82–90.

    Article  Google Scholar 

  • Herm, D. (1972). Pitfalls in paleoecologic interpretation—An integrated approach to avoid the major pits. In Mamet, B. E., and Westermann, G. E. (eds.), International Geographic Congress, 24th Session, Section 7: Paleontology, Montreal, pp. 82–88.

  • Hernández Fernández, M. (2001). Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography 10: 89–204.

    Google Scholar 

  • Hernández Fernández, M., and Peláez-Campomanes, P. (2005). Quantitative palaeoclimatic inference based on mammal faunas. Global Ecological Biogeography 14: 39–56.

    Article  Google Scholar 

  • Hester, J. J. (1964). The possibilities for paleoecological reconstruction—Archaeology. In Hester, J. J., and Schoenwetter, J. (eds.), The Reconstruction of Past Environments: Proceedings, Publication No. 3, Fort Burgwin Research Center, Taos, NM, pp. 19–23.

  • Hibbard, C. W. (1944). Stratigraphy and vertebrate paleontology of Pleistocene deposits of southwestern Kansas. Geological Society of America Bulletin 55: 707–754.

    Article  Google Scholar 

  • Hibbard, C. W. (1955). The Jinglebob interglacial (Sangamon?) fauna from Kansas and its climatic significance. Contributions from the Museum of Paleontology 12: 179–228 (University of Michigan, Ann Arbor).

  • Hibbard, C. W. (1958). Summary of North American Pleistocene mammalian local faunas. Papers of the Michigan Academy of Science, Arts and Letters 43: 3–32.

    Google Scholar 

  • Hibbard, C. W. (1960). An interpretation of Pliocene and Pleistocene climates in North America. Annual Report of the Michigan Academy of Science, Arts and Letters 62: 5–30.

    Google Scholar 

  • Hibbard, C. W. (1963). A Late Illinoian fauna from Kansas and its climatic significance. Papers of the Michigan Academy of Science, Arts and Letters 48: 187–221.

    Google Scholar 

  • Hibbard, C. W., Ray, C. E., Savage, D. E., Taylor, D. W., and Guilday, J. E. (1965). Quaternary mammals of North America. In Wright, H. E., Jr., and Frey, D. G. (eds.), The Quaternary of the United States, Princeton University Press, Princeton, NJ, pp. 509–525.

    Google Scholar 

  • Hijmans, R. J., and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12: 2272–2281.

    Article  Google Scholar 

  • Hobbs, R. J., Higgs, E., and Harris, J. A. (2009). Novel ecosystems: Implications for conservation and restoration. Trends in Ecology and Evolution 24: 599–605.

    Article  Google Scholar 

  • Hobbs, R. J., Higgs, E., Hall, C. M., Bridgewater, P., Chapin, F. S., III, Ellis, E. C., Ewel, J. J., Hallett, L. M., Harris, J., Hulvey, K. B., Jackson, S. T., Kennedy, P. L., Kueffer, C., Lach, L., Lantz, T. C., Lugo, A. E., Mascaro, J., Murphy, S. D., Nelson, C. R., Perring, M. P., Richardson, D. M., Seastedt, T. R., Standish, R. J., Starzomski, B. M., Suding, K. N., Tognetti, P. M., Yakob, L., and Yung, L. (2014). Managing the whole landscape: Historical, hybrid, and novel ecosystems. Frontiers in Ecology and Environment 12: 557–564.

    Article  Google Scholar 

  • Hoffmann, R. S., and Jones, J. K., Jr. (1970). Influence of late-glacial and post-glacial events on the distribution of recent mammals on the northern Great Plains. In Dort, W., Jr., and Jones, J. K., Jr. (eds.), Pleistocene and Recent Environments of the Central Great Plains, Special Publication 3, Department of Geology, University of Kansas Press, Lawrence, pp. 355–394.

    Google Scholar 

  • Hokr, Z. (1951). A method of the quantitative determination of the climate in the Quaternary period by means of mammal associations. Sborník of the Geological Survey of Czechoslovakia 18: 209–219.

    Google Scholar 

  • Holbrook, S. J. (1975). Prehistoric Paleoecology of Northwestern New Mexico, Ph.D. dissertation, Department of Zoology, University of California, Berkeley.

  • Holbrook, S. J. (1977). Rodent faunal turnover and prehistoric community stability in northwestern New Mexico. American Naturalist 111: 1195–1208.

    Article  Google Scholar 

  • Holbrook, S. J. (1980). Species diversity patterns in some present and prehistoric rodent communities. Oecologia 44: 355–367.

    Article  Google Scholar 

  • Holbrook, S. J. (1982a). Prehistoric environmental reconstruction by mammalian microfaunal analysis, Grasshopper Pueblo. In Longacre, W. A., Holbrook, S. J., and Graves, M. W. (eds.), Multidisciplinary Research at Grasshopper Pueblo, Arizona, Anthropological Papers No. 40, University of Arizona, Tucson, pp. 73–86.

  • Holbrook, S. J. (1982b). The prehistoric local environment of Grasshopper Pueblo, Arizona. Journal of Field Archaeology 9: 207–215.

    Google Scholar 

  • Holbrook, S. J., and Mackey, J. C. (1976). Prehistoric environmental change in northern New Mexico: Evidence from a Gallina phase archaeological site. Kiva 41: 309–317.

    Article  Google Scholar 

  • Holdaway, S., and Wandsnider, L. (eds.) (2008). Time in Archaeology: Time Perspectivism Revisited, University of Utah Press, Salt Lake City.

    Google Scholar 

  • Holt, R. D. (2003). On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research 5: 159–178.

    Google Scholar 

  • Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences USA 106: 19659–19665.

    Article  Google Scholar 

  • Holt, R. D., and Keitt, T. H. (2005). Species’ borders: A unifying theme in ecology. Oikos 108: 3–6.

    Article  Google Scholar 

  • Hopley, P. J., and Maslin, M. A. (2010). Climate-averaging of terrestrial faunas: An example from the Plio-Pleistocene of South Africa. Paleobiology 36: 32–50.

    Article  Google Scholar 

  • Hughes, S. S. (2009). Noble marten (Martes americana nobilis) revisited: Its adaptation and extinction. Journal of Mammalogy 90: 74–92.

    Article  Google Scholar 

  • Hunter, M. D., and Price, P. W. (1992). Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732.

    Google Scholar 

  • Huntley, B. (2012). Reconstructing palaeoclimates from biological proxies: Some often overlooked sources of uncertainty. Quaternary Science Reviews 31: 1–16.

    Article  Google Scholar 

  • Huston, M. A., and Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena. Ecological Monographs 81: 349–405.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium in Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Jackson, S. T. (2012). Representation of flora and vegetation in Quaternary fossil assemblages: Known and unknown knowns and unknowns. Quaternary Science Reviews 49: 1–15.

    Article  Google Scholar 

  • Jackson, S. T., and Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the Late Quaternary. Paleobiology 26 (Supplement): 194–220.

    Article  Google Scholar 

  • Jacobson, J. A. (2003). Identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial remains as a means of determining human subsistence strategies. Plains Anthropologist 48: 287–297.

    Google Scholar 

  • Jacobson, J. A. (2004). Determining Human Ecology on the Plains through the Identification of Mule Deer (Odocoileus hemionus) and White-tailed Deer (Odocoileus virginianus) Postcranial Remains, Ph.D. dissertation, Department of Anthropology, University of Tennessee, Knoxville.

  • Jaeger, J.-J., and Wesselman, H. B. (1976). Fossil remains of micromammals from the Omo Group deposits. In Coppen, Y., Howell, F. C., Isaac, G. Ll., and Leakey, R. E. (eds.), Earliest Man and Environments in the Lake Rudolf Basin: Stratigraphy, Paleoecology, and Evolution, University of Chicago Press, Chicago, pp. 351–360.

  • Jamniczky, H. A., Brinkman, D. B., and Russell, A. P. (2003). Vertebrate microsite sampling: How much is enough? Journal of Vertebrate Paleontology 23: 725–734.

    Article  Google Scholar 

  • Jamniczky, H. A., Brinkman, D. B., and Russell, A. P. (2008). How much is enough? A repeatable, efficient, and controlled sampling protocol for assessing taxonomic diversity and abundance in vertebrate microfossil assemblages. In Sankey, J. T., and Baszio, S. (eds.), Vertebrate Microfossil Assemblages: Their Role in Paleoecology and Paleobiogeography, Indiana University Press, Bloomington, pp. 9–16.

    Google Scholar 

  • Jass, C. N., Poteet, M. F., and Bell, C. J. (2015). Response of pocket gophers (Geomys) to Late Quaternary environmental change on the Edwards Plateau of central Texas. Historical Biology 27: 192–213.

    Article  Google Scholar 

  • Jehl, J. R., Jr. (1966). Subspecies of recent and fossil birds. Auk 83: 306–307.

    Article  Google Scholar 

  • Johnson, E. (1986). Late Pleistocene and Early Holocene vertebrates and paleoenvironments on the southern High Plains, USA. Géographie Physique et Quaternaire 40: 249–261.

    Article  Google Scholar 

  • Johnson, E. (1987). Vertebrate remains. In Johnson, E. (ed.), Lubbock Lake: Late Quaternary Studies on the Southern High Plains, Texas A&M University Press, College Station, pp. 49–89.

  • Johnson, R. G. (1960). Environmental interpretation of Pleistocene marine species. Journal of Geology 68: 575–576.

    Article  Google Scholar 

  • Kearney, M., and Porter, W. P. (2004). Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85: 3119–3131.

    Article  Google Scholar 

  • Kearney, M., and Porter, W. P. (2009). Mechanistic niche modeling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  Google Scholar 

  • Kidwell, S. M., and Tomasovych, A. (2013). Implications of time-averaged death assemblages for ecology and conservation biology. Annual Review of Ecology, Evolution and Systematics 44: 539–563.

    Article  Google Scholar 

  • King, F. B., and Graham, R. W. (1981). Effects of ecological and paleoecological patterns on subsistence and paleoenvironmental reconstructions. American Antiquity 46: 128–142.

    Article  Google Scholar 

  • Kingston, J. D. (2007). Shifting adaptive landscapes: Progress and challenges in reconstructing early hominid environments. Yearbook of Physical Anthropology 50: 20–58.

    Article  Google Scholar 

  • Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., Limp, W. F., Maschner, H. D., Michener, W. K., Pauketat, T. R., Peregrine, P., Sabloff, J. A., Wilkinson, T. J., Wright, H. T., and Zeder, M. A. (2014). Grand challenges for archaeology. American Antiquity 79: 5–24.

    Article  Google Scholar 

  • Klein, R. G. (1986). Carnivore size and Quaternary climatic change in southern Africa. Quaternary Research 26: 153–170.

    Article  Google Scholar 

  • Knapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. L., Hartnett, D. C., Johnson, L. C., and Towne, E. G. (1999). The keystone role of bison in North American tallgrass prairie. BioScience 49: 39–50.

    Article  Google Scholar 

  • Koch, P. L., and Barnosky, A. D. (2006). Late Quaternary extinctions: State of the debate. Annual Review of Ecology, Evolution and Systematics 37: 215–250.

    Article  Google Scholar 

  • Kowalewski, M. (1996). Time-averaging, overcompleteness, and the geological record. Journal of Geology 104: 317–326.

    Article  Google Scholar 

  • Ladd, H. S. (1959). Ecology, paleontology, and stratigraphy. Science 129: 69–78.

    Article  Google Scholar 

  • Lang, R. W., and Harris, A. H. (1984). The Faunal Remains from Arroyo Hondo Pueblo, New Mexico: A Study in Short-Term Subsistence Change, Arroyo Hondo Archaeological Series Vol. 5, School of American Research Press, Santa Fe, NM.

    Google Scholar 

  • Lavergne, S., Mouquet, N., Thuiller, W., and Ronce, O. (2010). Biodiversity and climate change: Integrating evolutionary and ecological responses to species and communities. Annual Review of Ecology, Evolution, and Systematics 41: 321–350.

    Article  Google Scholar 

  • Lawrence, B. (1973). Problems in the inter-site comparisons of faunal remains. In Matolcsi, J. (ed.), Domestikationsforschung und Geschichte der Haustiere, Akademiai Kiado, Budapest, pp. 397–402.

    Google Scholar 

  • Lawrence, D. R. (1968). Taphonomy and information losses in fossil communities. Geological Society of America Bulletin 79: 1315–1330.

    Article  Google Scholar 

  • Lawrence, D. R. (1971). The nature and structure of paleoecology. Journal of Paleontology 45: 593–607.

    Google Scholar 

  • Lee-Thorpe, J. A. (2008). On isotopes and old bones. Archaeometry 50: 925–950.

    Article  Google Scholar 

  • Le Fur, S., Fara, E., and Vignaud, P. (2011). Effect of simulated faunal impoverishment and mixture of the ecological structure of modern mammal faunas: Implications for the reconstruction of Mio-Pliocene African palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology 305: 295–309.

    Article  Google Scholar 

  • Leroux, S. J., and Loreau, M. (2015). Theoretical perspectives on bottom-up and top-down interactions across ecosystems. In Hanley, T. C., and La Pierre, K. J. (eds.), Trophic Ecology: Bottom-Up and Top-Down Interactions across Aquatic and Terrestrial Systems, Cambridge University Press, Cambridge, pp. 1–27.

    Google Scholar 

  • Levinson, M. (1985). Are fossil rodents useful in palaeo-ecological interpretations? Annals of the Geological Survey of South Africa 19: 53–64.

    Google Scholar 

  • Lister, A. M. (1997). The evolutionary response of vertebrates to Quaternary environmental change. In Huntley, B., Cramer, W., Prentice, A. V., and Allen, J. R. (eds.), Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, NATO ASI Series Vol. 147, Springer, Berlin, pp. 287–302.

    Chapter  Google Scholar 

  • López-García, J. M., Blain, H.-A., Bennàsar, M., and Fernández-García, M. (2014). Environmental and climatic context of Neanderthal occupation in southwestern Europe during MIS3 inferred from the small-vertebrate assemblages. Quaternary International 326–327: 319–328.

    Article  Google Scholar 

  • López-García, J. M., Soler, N., Maroto, J., Soler, J., Alcalde, G., Galobart, A., Bennasar, M., and Burjachs, F. (2015a). Palaeoenvironmental and palaeoclimatic reconstruction of the latest Pleistocene of L’Arbreda Cave (Serinya, Girona, northeastern Iberia) inferred from the small-mammal (insectivore and rodent) assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 435: 244–253.

    Article  Google Scholar 

  • López-García, J. M., dalla Valle, C., Cremaschi, M., and Peresani, M. (2015b). Reconstruction of the Neanderthal and modern human landscape and climate from the Fumane Cave sequence (Verona, Italy) using small-mammal assemblages. Quaternary Science Reviews 128: 1–13.

    Article  Google Scholar 

  • Louthan, A. M., Doak, D. F., and Angert, A. L. (2015). Where and when do species interactions set range limits? Trends in Ecology and Evolution 30: 780–792.

    Article  Google Scholar 

  • Lozek, V. (1986). Mollusca analysis. In Berglund, B. E. (ed.), Handbook of Palaeoecology and Palaeohydrology, John Wiley and Sons, Chichester, pp. 729–740.

    Google Scholar 

  • Lundelius, E. L., Jr. (1964). The use of vertebrates in paleoecological reconstructions. In Hester, J. J., and Schoenwetter, J. (eds.), The Reconstruction of Past Environments: Proceedings, Publication No. 3, Fort Burgwin Research Center, Taos, NM, pp. 26–31.

  • Lundelius, E. L., Jr. (1967). Late-Pleistocene and Holocene faunal history of central Texas. In Martin, P. S., and Wright, H. E., Jr., Pleistocene Extinctions: The Search for a Cause, Yale University Press, New Haven, CT, pp. 287–319.

  • Lundelius, E. L., Jr. (1972). Vertebrate remains from the Gray Sand. In Hester, J. J. (ed.), Blackwater Locality No. 1: A Stratified, Early Man Site in Eastern New Mexico, Publication No. 8, Fort Burgwin Research Center, Taos, NM, pp. 148–163.

  • Lundelius, E. L., Jr. (1974). The last fifteen thousand years of faunal change in North America. In Black, C. C. (ed.), History and Prehistory of the Lubbock Lake Site, The Museum Journal 15, Texas Tech University, Lubbock Lake, pp. 141–160.

    Google Scholar 

  • Lundelius, E. L., Jr. (1976). Vertebrate paleontology of the Pleistocene: An overview. In West, R. C., and Haag, W. G. (eds.), Ecology of the Pleistocene: A Symposium, Geoscience and Man 13, Louisiana State University, Baton Rouge, pp. 45–59.

    Google Scholar 

  • Lundelius, E. L., Jr. (1983). Climatic implications of Late Pleistocene and Holocene faunal associations in Australia. Alcheringa 7: 135–149.

    Article  Google Scholar 

  • Lundelius, E. L., Jr. (1985). North American Pleistocene mammals: Major problems. Acta Zoologici Fennica 170: 167–171.

    Google Scholar 

  • Lundelius, E. L., Jr. (1998). Development of Quaternary vertebrate paleontology in North America. In Saunders, J. J., Styles, B. W., and Baryshnikov, G. F. (eds.), Quaternary Paleozoology in the Northern Hemisphere, Scientific Papers Vol. 27, Illinois State Museum, Springfield, pp. 235–248.

    Google Scholar 

  • Lupo, K. D. (2007). Evolutionary foraging models in zooarchaeological analysis: Recent applications and future challenges. Journal of Archaeological Research 15: 143–189.

    Article  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate Taphonomy, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lyman, R. L. (1995). Determining when rare (zoo)archaeological phenomena are truly absent. Journal of Archaeological Method and Theory 2: 369–424.

    Article  Google Scholar 

  • Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology 23: 13–20.

    Google Scholar 

  • Lyman, R. L. (2003). The influence of time averaging and space averaging on application of foraging theory in archaeology. Journal of Archaeological Science 30: 595–610.

    Article  Google Scholar 

  • Lyman, R. L. (2008a). Estimating the magnitude of data asymmetry in paleozoological biogeography. International Journal of Osteoarchaeology 18: 85–94.

    Article  Google Scholar 

  • Lyman, R. L. (2008b). Quantitative Paleozoology, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lyman, R. L. (2010a). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology 30: 126–136.

    Article  Google Scholar 

  • Lyman, R. L. (2010b). Prehistoric anthropogenic impacts to local and regional faunas are not ubiquitous. In Dean, R. M. (ed.), The Archaeology of Anthropogenic Environments, Occasional Paper No. 37, Center for Archaeological Investigations, Southern Illinois University, Carbondale, pp. 204–224.

  • Lyman, R. L. (2011). Paleoecological and biogeographical implications of late Pleistocene noble marten (Martes americana nobilis) in eastern Washington State, USA. Quaternary Research 75: 176–182.

    Article  Google Scholar 

  • Lyman, R. L. (2012a). Human-behavioral and paleoecological implications of Terminal Pleistocene fox remains at the Marmes Site (45FR50), eastern Washington State, USA. Quaternary Science Reviews 41: 39–48.

    Article  Google Scholar 

  • Lyman, R. L. (2012b). The influence of screen-mesh size, and size and shape of rodent teeth on recovery. Journal of Archaeological Science 39: 1854–1861.

    Article  Google Scholar 

  • Lyman, R. L. (2012c). Rodent-prey content in long-term samples of barn owl (Tyto alba) pellets from the northwestern United States reflects local agricultural change. American Midland Naturalist 167: 150–163.

    Article  Google Scholar 

  • Lyman, R. L. (2014). Terminal Pleistocene change in mammal communities in southeastern Washington State, USA. Quaternary Research 81: 295–304.

    Article  Google Scholar 

  • Lyman, R. L., and Ames, K. M. (2004). Sampling to redundancy in zooarchaeology: Lessons from the Portland Basin, northwestern Oregon and southwestern Washington. Journal of Ethnobiology 24: 329–346.

    Google Scholar 

  • Lyman, R. L., and Ames, K. M. (2007). On the use of species-area curves to detect the effects of sample size. Journal of Archaeological Science 34: 1985–1990.

    Article  Google Scholar 

  • Lyman, R. L., and Cannon, K. P. (eds.) (2004). Zooarchaeology and Conservation Biology, University of Utah Press, Salt Lake City.

    Google Scholar 

  • Lyman, R. L., and Lyman, R. J. (2003). Lessons from temporal variation in the mammalian faunas from two collections of owl pellets in Columbia County, Washington. International Journal of Osteoarchaeology 13: 150–156.

    Article  Google Scholar 

  • Lynch, M., and Gabriel, W. (1987). Environmental tolerance. American Naturalist 129: 283–303.

    Article  Google Scholar 

  • Mack, R. N., and Thompson, J. N. (1982). Evolution in steppe with few large, hooved mammals. American Naturalist 119: 757–773.

    Article  Google Scholar 

  • Mannion, P. D., and Upchurch, P. (2010). Completeness metrics and the quality of the sauropodomorph fossil record through geological and historical time. Paleobiology 36: 283–302.

    Article  Google Scholar 

  • Mares, M. A., and Willig, M. R. (1994). Inferring biome associations of recent mammals from samples of temperate and tropical faunas: Paleoecological considerations. Historical Biology 8: 31–48.

    Article  Google Scholar 

  • Martin, P. S. (1958). Pleistocene ecology and biogeography of North America. In Hubbs, C. L. (ed.), Zoogeography, Publication 51, American Association for the Advancement of Science, Washington, DC, pp. 375–420.

  • Martínez-Meyer, E., Peterson, A. T., and Hargrove, W. W. (2004). Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13: 305–314.

    Article  Google Scholar 

  • Matthews, T., Denys, C., and Parkington, J. E. (2005). The palaeoecology of the micromammals from the late Middle Pleistocene site of Hoedjiespunt 1 (Cape Province, South Africa). Journal of Human Evolution 49: 432–451.

    Article  Google Scholar 

  • Matthews, T., Rector, A., Jacobs, Z., Herries, A. I. R., and Marean, C. W. (2011). Environmental implications of micromammals accumulated close to the MIS 6 to MIS 5 transition at Pinnacle Point Cave 9 (Mossel Bay, Western Cape Province, South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology 302: 213–229.

    Article  Google Scholar 

  • Mayr, E. (1970). Populations, Species, and Evolution, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • McCain, C. M., and King, S. R. (2014). Body size and activity times mediate mammalian responses to climate change. Global Change Biology 20: 1760–1769.

    Article  Google Scholar 

  • McCain, C. M., Szewczyk, T., and Knight, K. B. (2016). Population variability complicates the accurate detection of climate change responses. Global Change Biology 22: 2081–2093.

    Article  Google Scholar 

  • McCown, T. D. (1961). Animals, climate and Palaeolithic man. Kroeber Anthropological Society Papers 25: 221–230.

    Google Scholar 

  • McDonald, H. G., and Bryson, R. A. (2010). Modeling Pleistocene local climatic parameters using macrophysical climate modeling and the paleoecology of Pleistocene megafauna. Quaternary International 217: 131–137.

    Article  Google Scholar 

  • McGuire, J. L. (2011). Identifying California Microtus species using geometric morphometrics documents Quaternary geographic range contractions. Journal of Mammalogy 92: 1383–1394.

    Article  Google Scholar 

  • McGuire, J. L., and Davis, E. B. (2014). Conservation paleobiogeography: The past, present and future of species distributions. Ecography 37: 1092–1094.

    Google Scholar 

  • McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia 164: 13–23.

    Article  Google Scholar 

  • Mead, J. I., and Spaulding, W. G. (1995). Pika (Ochotona) and paleoecological reconstructions of the intermountain west, Nevada and Utah. In Steadman, D. W., and Mead, J. I. (eds.), Late Quaternary Environments and Deep History: A Tribute to Paul S. Martin, The Mammoth Site, Hot Springs, SD, pp. 165–186.

    Google Scholar 

  • Miller, A. H. (1937). Biotic associations and life-zones in relation to the Pleistocene birds of California. The Condor 39: 248–252.

    Article  Google Scholar 

  • Miller, J. H. (2011). Ghosts of Yellowstone: Multi-decadal histories of wildlife populations captured by bones on a modern landscape. PLoS One 6(3): 318057.

    Google Scholar 

  • Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., Villaseñor, A., Kanga, E., and Reed, D. (2014). Ecological fidelity of functional traits based on presence–absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40: 560–583.

    Article  Google Scholar 

  • Millien, V., Lyons, S. K., Olson, L., Smith, F. A., Wilson, A. B., and Yom-Tov, Y. (2006). Ecotypic variation in the context of global climate change: Revisiting the rules. Ecology Letters 9: 853–869.

    Article  Google Scholar 

  • Mills, L. S., Soulé, M. E., and Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience 43: 219–224.

    Article  Google Scholar 

  • Moine, O., Rousseau, D.-D., Jolly, D., and Vianey-Liaud, M. (2002). Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks. Quaternary Research 57: 162–172.

    Article  Google Scholar 

  • Monchot, H., and Gendron, D. (2010). Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from arctic archaeological sites. Journal of Archaeological Science 37: 799–806.

    Article  Google Scholar 

  • Moncrieff, G. R., Bond, W. J., and Higgins, S. I. (2016). Revising the biome concept for understanding and predicting global change impacts. Journal of Biogeography 43: 863–873.

    Article  Google Scholar 

  • Morin, X., and Lechowicz, M. J. (2008). Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters 4: 573–576.

    Article  Google Scholar 

  • Morlan, R. E. (1984). Biostratigraphy and biogeography of Quaternary microtine rodents from northern Yukon Territory, eastern Beringia. In Genoways, H. H., and Dawson, M. R. (eds.), Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday, Special Publication No. 8, Carnegie Museum of Natural History, Pittsburgh, PA, pp. 184–199.

  • Mota-Vargas, C., and Rojas-Soto, O. R. (2016). Taxonomy and ecological niche modeling: Implications for the conservation of wood partridges (genus Dendrortyx). Journal for Nature Conservation 29: 1–13.

    Article  Google Scholar 

  • Munoz, C. M., Mauldin, R., Paul, D., and Kemp, L. (2014). Monitoring paleovegetation shifts through stable carbon isotope variability in archaeologically recovered leporids. Texas Journal of Science 63: 113–140.

    Google Scholar 

  • Nelson, R. S., and Semken, H. A. (1970). Paleoecological and stratigraphic significance of the muskrat in Pleistocene deposits. Geological Society of America Bulletin 81: 3733–3738.

    Article  Google Scholar 

  • Nikita, E. (2014). Estimation of the original number of individuals using multiple skeletal elements. International Journal of Osteoarchaeology 24: 660–664.

    Article  Google Scholar 

  • Nógues-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18: 521–531.

    Article  Google Scholar 

  • Nowak, R. S., Nowak, C. L., and Tusch, R. J. (2000). Probability that a fossil absent from a sample is also absent from the paleolandscape. Quaternary Research 54: 144–154.

    Article  Google Scholar 

  • Odum, E. P. (1971). Fundamentals of Ecology, 3rd ed., W. B. Saunders Company, Philadelphia.

    Google Scholar 

  • Olsen, J. W. (1982). Prehistoric environmental reconstruction by vertebrate faunal analysis. In Longacre, W. A., Holbrook, S. J., and Graves, M. W. (eds.), Multidisciplinary Research at Grasshopper Pueblo, Arizona, Anthropological Papers No. 40, University of Arizona, Tucson, pp. 63–72.

  • Olszewski, T. D. (1999). Taking advantage of time averaging. Paleobiology 25: 226–238.

    Article  Google Scholar 

  • Orlando, L., and Cooper, A. (2014). Using ancient DNA to understand evolutionary and ecological processes. Annual Review of Ecology, Evolution and Systematics 45: 573–598.

    Article  Google Scholar 

  • Owen, P. R., Bell, C. J., and Mead, E. M. (2000). Fossils, diet, and conservation of black-footed ferrets (Mustela nigripes). Journal of Mammalogy 81: 422–433.

    Article  Google Scholar 

  • Owen-Smith, R. N. (1988). Megaherbivores: The Influence of Very Large Body Size on Ecology, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Paine, R. T. (1980). Food webs: Linkage, interaction strength and community infrastructure. Journal of Animal Ecology 49: 666–685.

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.

    Article  Google Scholar 

  • Patton, T. H. (1963). Fossil Vertebrates from Miller’s Cave, Llano County, Texas, Bulletin 7, Texas Memorial Museum, University of Texas, Austin.

    Google Scholar 

  • Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography 38: 817–827.

    Article  Google Scholar 

  • Peterson, A. T., and Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação 10: 1–6.

    Article  Google Scholar 

  • Peterson, C. H. (1977). The paleoecological significance of undetected short-term variability. Journal of Paleontology 51: 976–981.

    Google Scholar 

  • Pianka, E. R. (1978). Evolutionary Ecology, 2nd ed., Harper and Row, New York.

    Google Scholar 

  • Pierce, B. M., Bleich, V. C., Monteith, K. L., Bowyer, R. T., and Smith, W. P. (2012). Top-down versus bottom-up forcing: Evidence from mountain lions and mule deer. Journal of Mammalogy 93: 977–988.

    Article  Google Scholar 

  • Pinto, C. M., Soto-Centeno, J. A., Núñez Quiroz, Á. M., Ferreyra, N., Delgado-Espinoza, F., Stahl, P. W., and Tirira, D. G. (2016). Archaeology, biogeography, and mammalogy do not provide evidence for Tarukas (Cervidae: Hippocamelus antisensis) in Ecuador. Journal of Mammalogy 97: 41–53.

    Article  Google Scholar 

  • Pinto-Llona, A. C. (2013). Macrowear and occlusal microwear on teeth of cave bears Ursus spelaeus and brown bears Ursus arctos: Inferences concerning diet. Palaeogeography, Palaeoclimatology, Palaeoecology 370: 41–50.

    Article  Google Scholar 

  • Plummer, T. W., Bishop, L. C., and Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: Operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science 35: 3016–3027.

    Article  Google Scholar 

  • Polly, P. D., and Eronen J. T. (2011). Mammal associations in the Pleistocene of Britain: Implications of ecological niche modeling and a method for reconstructing palaeoclimate. In Ashton, N., Lewis, S., and Stringer, C. (eds.), The Ancient Human Occupation of Britain, Developments in Quaternary Science 14, Elsevier, Amsterdam, pp. 279–304.

    Chapter  Google Scholar 

  • Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., Frank, D. C., Damuth, J., Stenseth, N. C., and Fortelius, M. (2011). History matters: Ecometrics and integrative climate change biology. Proceedings of the Royal Society B 278: 1131–1140.

    Article  Google Scholar 

  • Purdue, J. R. (1989). Changes during the Holocene in the size of white-tailed deer (Odocoileus virginianus) from central Illinois. Quaternary Research 32: 307–316.

    Article  Google Scholar 

  • Qiao, H., Soberón, J., and Peterson, A. T. (2015). No silver bullets in correlative ecological niche modeling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution 6: 1126–1136.

    Article  Google Scholar 

  • Rainger, R. (1997). Everett C. Olson and the development of vertebrate paleoecology and taphonomy. Archives of Natural History 24: 373–396.

    Article  Google Scholar 

  • Raup, D. M., and Stanley, S. M. (1971). Principles of Paleontology, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Rea, A. M. (1986). Verification and reverification: Problems in archaeofaunal studies. Journal of Ethnobiology 6: 9–18.

    Google Scholar 

  • Redding, R. W. (1978). Rodents and the archaeological paleoenvironment: Considerations, problems, and the future. In Meadow, R. H., and Zeder, M. A. (eds.), Approaches to Faunal Analysis in the Middle East, Bulletin 2, Peabody Museum, Harvard University, Cambridge, MA, pp. 63–68.

    Google Scholar 

  • Reed, C. A. (1963). Osteo-archaeology. In Brothwell, D., and Higgs, E. (eds.), Science in Archaeology, Basic Books, New York, pp. 204–216.

    Google Scholar 

  • Reed, C. A., and Braidwood, R. J. (1960). Toward the reconstruction of the environmental sequence of northeastern Iraq. In Braidwood, R. J., and Howe, B. (eds.), Prehistoric Investigations in Iraqi Kurdistan, Studies in Ancient Oriental Civilization 31, Oriental Institute, University of Chicago, Chicago, pp. 163–173.

    Google Scholar 

  • Reed, D. N. (2007). Serengeti micromammals and their implications for Olduvai paleoenvironments. In Bobe, R., Alemseged, Z., and Behrensmeyer, A. K. (eds.), Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence, Springer, Dordrecht, The Netherlands, pp. 217–255.

    Chapter  Google Scholar 

  • Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution 54: 743–768.

    Article  Google Scholar 

  • Reed, K. E. (2013). Multiproxy paleoecology: Reconstructing evolutionary context in paleoanthropology. In Begun, D. R. (ed.), A Companion to Paleoanthropology, Blackwell, Malden, MA, pp. 204–225.

    Google Scholar 

  • Reed, K. E., Spencer, L. M., and Rector, A. L. (2013). Faunal approaches to early hominin paleoecology. In Sponheimer, M., Lee-Thorp, J. A., Reed, K. E., and Ungar, P. S. (eds.), Early Hominin Paleoecology, University Press of Colorado, Boulder, pp. 3–34.

    Chapter  Google Scholar 

  • Rhoades, R. E. (1978). Archaeological use and abuse of ecological concepts and studies: The ecotone example. American Antiquity 43: 608–614.

    Article  Google Scholar 

  • Rhodes, R. S., II. (1984). Paleoecology and Regional Paleoclimatic Implications of the Farmdalian Craigmile and Woodfordian Waubonsie Mammalian Local Faunas, Southwestern Iowa, Reports of Investigations No. 40, Illinois State Museum, Springfield.

  • Ries, L., Fletcher, R. J., Jr., Battin, J., and Sisk, T. D. (2004). Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annual Review of Ecology, Evolution and Systematics 35: 491–522.

    Article  Google Scholar 

  • Rivals, F., Solounias, N., and Mihlbachler, M. C. (2007). Evidence for geographic variation in the diets of Late Pleistocene and Early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research 68: 338–346.

    Article  Google Scholar 

  • Rivals, F., Solounias, N., and Schaller, G. B. (2011). Diet of Mongolian gazelles and Tibetan antelopes from steppe habitats using premaxillary shape, tooth mesowear and microwear analyses. Mammalian Biology 76: 358–364.

    Article  Google Scholar 

  • Romer, A. S. (1961). Palaeozoological evidence of climate: (I) Vertebrates. In Nairn, A. E. (ed.), Descriptive Paleoclimatology, Wiley-Interscience, New York, pp. 183–206.

    Google Scholar 

  • Rosvold, J., Andersen, R., Linnell, J. D., and Jufthammer, A. K. (2013). Cervids in a dynamic northern landscape: Holocene changes in the relative abundance of moose and red deer at the limits of their distributions. The Holocene 23: 1143–1150.

    Article  Google Scholar 

  • Rowe, R. J., and Terry, R. C. (2014). Small mammal responses to environmental change: Integrating past and present dynamics. Journal of Mammalogy 95: 1157–1174.

    Article  Google Scholar 

  • Roy, K., Valentine, J. W., Jablonski, D., and Kidwell, S. M. (1996). Scales of climatic variability and time averaging in Pleistocene biotas: Implications for ecology and evolution. Trends in Ecology and Evolution 11: 458–463.

    Article  Google Scholar 

  • Ruddiman, W. F. (2013). The Anthropocene. Annual Review of Earth and Planetary Sciences 41: 45–68.

    Article  Google Scholar 

  • Rudwick, M. J. (1971). Uniformity and progression: Reflections on the structure of biological theory in the age of Lyell. In Roller, D. H. (ed.), Perspectives in the History of Science and Technology, University of Oklahoma Press, Norman, pp. 209–227.

    Google Scholar 

  • Rull, V. (2012). Palaeobiodiversity and taxonomic resolution: Linking past trends with present patterns. Journal of Biogeography 39: 1005–1006.

    Article  Google Scholar 

  • Rymer, L. (1978). The use of uniformitarianism and analogy in palaeoecology, particularly pollen analysis. In Walker, D., and Guppy, J. C. (eds.), Biology and Quaternary Environments, Australian Academy of Science, Canberra, pp. 245–257.

    Google Scholar 

  • Sandweiss, D. H., and Kelley, A. R. (2012). Archaeological contributions to climate change research: The archaeological record as a paleoclimatic and paleoenvironmental archive. Annual Review of Anthropology 41: 371–391.

    Article  Google Scholar 

  • Schmitt, D. N., and Lupo, K. D. (2012). The Bonneville Estates rockshelter rodent fauna and changes in Late Pleistocene–Middle Holocene climates and biogeography in the northern Bonneville Basin, USA. Quaternary Research 78: 95–102.

    Article  Google Scholar 

  • Schubert, B. W. (2003). A Late Pleistocene and Early Holocene mammalian fauna from Little Beaver Cave, central Ozarks, Missouri. In Schubert, B. W., Mead, J. I., and Graham, R. W. (eds.), Ice Age Cave Faunas of North America, Indiana University Press, Bloomington, pp. 149–200.

    Google Scholar 

  • Schultz, G. E. (1967). Four superimposed Late-Pleistocene vertebrate faunas from southwest Kansas. In Martin, P. S., and Wright, H. E., Jr. (eds.), Pleistocene Extinctions: The Search for a Cause, Yale University Press, New Haven, CT, pp. 321–336.

    Google Scholar 

  • Schultz, G. E. (1969). Geology and Paleontology of a Late Pleistocene Basin in Southwest Kansas, Special Paper No. 105, Geological Society of America, Boulder, CO.

  • Schultz, G. E. (2010). Pleistocene (Irvingtonian, Cudahyan) vertebrates from the Texas panhandle, and their geographic and paleoecologic significance. Quaternary International 217: 195–224.

    Article  Google Scholar 

  • Scott, G. H. (1963). Uniformitarianism, the uniformity of nature, and paleoecology. New Zealand Journal of Geology and Geophysics 6: 510–527.

    Article  Google Scholar 

  • Sears, P. B. (1964). The goals of paleoecological reconstruction. In Hester, J. J., and Schoenwetter, J. (eds.), The Reconstruction of Past Environments: Proceedings, Publication No. 3, Fort Burgwin Research Center, Taos, NM, pp. 4–6.

  • Semken, H. A., Jr. (1966). Stratigraphy and paleontology of the McPherson Equus beds (Sandahl Local Fauna), McPherson County, Kansas. Contributions from the Museum of Paleontology 20: 121–178 (University of Michigan, Ann Arbor).

  • Semken, H. A., Jr. (1980). Holocene climatic reconstructions derived from the three micromammal bearing cultural horizons of the Cherokee Sewer site, northwestern Iowa. In Anderson, D. C., and Semken, H. A., Jr. (eds.), The Cherokee Excavations, Academic Press, New York, pp. 67–99.

    Google Scholar 

  • Semken, H. A., Jr. (1983). Holocene mammalian biogeography and climatic change in the eastern and central United States. In Wright, H. E., Jr. (ed.), Late-Quaternary Environments of the United States, Vol. 2: The Holocene, University of Minnesota Press, Minneapolis, pp. 182–207.

    Google Scholar 

  • Semken, H. A., Jr. (1988). Environmental interpretations of the “disharmonious” Late Wisconsin biome of southeastern North America. In Laub, R. S., Miller, N. G., and Steadman, D. W. (eds.), Late Pleistocene and Early Holocene Paleoecology and Archaeology of the Eastern Great Lakes Region, Bulletin 33, Buffalo Society of Natural Sciences, Buffalo, NY, pp. 185–194.

    Google Scholar 

  • Semken, H. A., Jr., and Graham, R. W. (1987). Summary: Environmental analysis and Plains archaeology. In Graham, R. W., Semken, H. A., Jr., and Graham, M. A. (eds.), Late Quaternary Mammalian Biogeography and Environments of the Great Plains and Prairies, Scientific Papers Vol. 22, Illinois State Museum, Springfield, pp. 474–480.

  • Semken, H. A., Jr., Graham, R. W., and Stafford, T. W., Jr. (2010). AMS 14C analysis of Late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quaternary International 217: 240–255.

    Article  Google Scholar 

  • Semken, H. A., Jr., and Wallace, S. C. (2002). Key to Arvicoline (“Microtine” rodents) and Arvicoline-like lower first molars recovered from late Wisconsinan and Holocene archaeological and palaeontological sites in eastern North America. Journal of Archaeological Science 29: 23–31.

    Article  Google Scholar 

  • Sénégas, F., and Thakeray, J. F. (2008). Temperature indices based on relative abundances of rodent taxa represented in South African Plio-Pleistocene assemblages. Annals of the Transvaal Museum 45: 1–2.

    Google Scholar 

  • Sexton, J. P., McIntyre, P. J., Angert, A. L., and Rice, K. J. (2009). Evolution and ecology of range limits. Annual Review of Ecology, Evolution and Systematics 40: 415–436.

    Article  Google Scholar 

  • Shelford, V. E. (1913). Animal Communities in Temperate America, University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Shelford, V. E. (1931). Some concepts of bioecology. Ecology 12: 455–467.

    Article  Google Scholar 

  • Shotwell, J. A. (1955). An approach to the paleoecology of mammals. Ecology 36: 327–337.

    Article  Google Scholar 

  • Simberloff, D. (1998). Flagships, umbrellas, and keystones: Is single-species management passé in the landscape era? Biological Conservation 83: 247–257.

    Article  Google Scholar 

  • Simpson, G. G. (1936). Data on the relationships of local and continental mammalian faunas. Journal of Paleontology 10: 410–414.

    Google Scholar 

  • Simpson, G. G. (1937). The Fort Union of the Crazy Mountain Field, Montana, and Its Mammalian Faunas, United States National Museum Bulletin 169, Smithsonian Institution, Washington, DC.

    Google Scholar 

  • Simpson, G. G. (1942). The beginnings of vertebrate paleontology in North America. Proceedings of the American Philosophical Society 81: 130–188.

    Google Scholar 

  • Simpson, G. G. (1943). Criteria for vertebrate subspecies, species and genera. Annals of the New York Academy of Sciences 44: 145–178.

    Article  Google Scholar 

  • Simpson, G. G. (1947). Holarctic mammalian faunas and continental relationships during the Cenozoic. Geological Society of America Bulletin 58: 613–688.

    Article  Google Scholar 

  • Simpson, G. G. (1953). Life of the Past: An Introduction to Paleontology, Yale University Press, New Haven, CT.

    Google Scholar 

  • Simpson, G. G. (1970). Uniformitarianism: An inquiry into principle, theory, and method in geohistory and biohistory. In Hecht, M. K., and Steere, W. C. (eds.), Essays in Evolution and Genetics, Appleton-Century-Crofts, New York, pp. 43–96.

    Google Scholar 

  • Slaughter, B. H. (1967). Animal ranges as a clue to Late-Pleistocene extinction. In Martin, P. S., and Wright, H. E., Jr. (eds.), Pleistocene Extinctions: The Search for a Cause, Yale University Press, New Haven, CT, pp. 155–167.

    Google Scholar 

  • Smith, J. P. (1919). Climatic relations of the Tertiary and Quaternary faunas of the California region. Proceedings of the California Academy of Sciences (4th series) 9(4): 123–173.

  • Smith, P. W. (1957). An analysis of post-Wisconsin biogeography of the Prairie Peninsula region based on distributional phenomena among terrestrial vertebrate populations. Ecology 38: 205–218.

    Article  Google Scholar 

  • Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.

    Article  Google Scholar 

  • Soberón, J., and Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA 106 (Supplement 2): 19644–19650.

    Article  Google Scholar 

  • Soberón, J., and Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10.

    Article  Google Scholar 

  • Socha, P. (2014). Rodent palaeofaunas from Bisnik Cave (Kraków–Czestochowa Upland, Poland): Palaeoecological, palaeoclimatic and biostratigraphic reconstruction. Quaternary International 326–327: 64–81.

    Article  Google Scholar 

  • Stegner, M. A. (2015). The Mescal Cave fauna (San Bernardino County, California) and testing assumptions of habitat fidelity in the Quaternary fossil record. Quaternary Research 83: 582–587.

    Article  Google Scholar 

  • Stephens, J. J. (1960). Stratigraphy and paleontology of a Late Pleistocene basin, Harper County, Oklahoma. Geological Society of America Bulletin 71: 1575–1702.

    Article  Google Scholar 

  • Stewart, J. R. (2005). The use of modern geographical ranges in the identification of archaeological bird remains. Documenta Archaeobiologiae 3: 43–54.

    Google Scholar 

  • Su, D. F., and Harrison, T. (2007). The paleoecology of the Upper Laetolil Beds at Laetoli: A reconsideration of the large mammal evidence. In Bobe, R., Alemseged, Z., and Behrensmeyer, A. K. (eds.), Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence, Springer, Dordrecht, The Netherlands, pp. 279–313.

    Chapter  Google Scholar 

  • Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A., and Sandel, B. (2015). The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics 46: 551–572.

    Article  Google Scholar 

  • Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D., and Normand, S. (2011). Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30: 2930–2947.

    Article  Google Scholar 

  • Swihart, R. K., Gehring, T. M., Kolozsvary, M. B., and Nupp, T. E. (2003). Responses of “resistant” vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundary. Diversity and Distributions 9: 1–18.

    Article  Google Scholar 

  • Taylor, D. W. (1965). The study of Pleistocene nonmarine mollusks in North America. In Wright, H. E., Jr., and Frey, D. G. (eds.), The Quaternary of the United States, Princeton University Press, Princeton, NJ, pp. 597–611.

    Google Scholar 

  • Tchernov, E. (1968). Succession of Rodent Faunas during the Upper Pleistocene of Israel, Paul Parey, Hamburg.

    Google Scholar 

  • Tchernov, E. (1975). Rodent faunas and environmental changes in the Pleistocene of Israel. In Prakash, I., and Gosh, P. K. (eds.), Rodents in Desert Environments, Junk, The Hague, pp. 331–362.

    Chapter  Google Scholar 

  • Tchernov, E. (1982). Faunal responses to environmental changes in the eastern Mediterranean during the last 20,000 years. In Bintliff, J. L., and Van Zeist, W. (eds.), Palaeoclimates, Palaeoenvironments and Human Communities in the Eastern Mediterranean Region in Later Prehistory, BAR International Series 133, Archaeopress, Oxford, pp. 105–129.

    Google Scholar 

  • Tedford, R. H. (1970). Principles and practices of mammalian geochronology in North America. In Yochelson, E. L. (ed.), Proceedings of the North American Paleontological Convention, Allen Press, Lawrence, KS, pp. 666–703.

    Google Scholar 

  • Terry, R. C. (2009). Paleoecology: Methods. Encyclopedia of Life Sciences,John Wiley and Sons, Chichester, a0003274.

    Google Scholar 

  • Terry, R. C. (2010a). The dead do not lie: Using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society B 277: 1193–1201.

    Article  Google Scholar 

  • Terry, R. C. (2010b). On raptors and rodents: Testing the ecological fidelity and spatiotemporal resolution of cave death assemblages. Paleobiology 36: 137–160.

    Article  Google Scholar 

  • Terry, R. C., Li, C., and Hadly, E. A. (2011). Predicting small-mammal responses to climatic warming: Autecology, geographic range, and the Holocene fossil record. Global Change Biology 17: 3019–3034.

    Article  Google Scholar 

  • Thackeray, J. F. (1987). Late Quaternary environmental changes inferred from small mammalian fauna, southern Africa. Climatic Change 10: 285–305.

    Article  Google Scholar 

  • Thackeray, J. F., and Reynolds, S. (1997). Variability in Plio-Pleistocene climates, habitats, and ungulate biomass in southern Africa. South African Journal of Science 93: 171–172.

    Google Scholar 

  • Thomas, K. D., and Mannino, M. A. (in press) Making numbers count: Beyond minimum numbers of individuals (MNI) for the quantification of mollusc assemblages from shell matrix sites. Quaternary International.

  • Thuiller, W., Lavorel, S., and Araújo, M. B. (2005). Niche properties and geographic extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography 14: 347–357.

    Article  Google Scholar 

  • Tiffney, B. H. (2008). Phylogeography, fossils, and northern hemisphere biogeography: The role of physiological uniformitarianism. Annals of the Missouri Botanical Garden 95: 135–143.

    Article  Google Scholar 

  • Tipper, J. C. (1979). Rarefaction and rarefiction—The use and abuse of a method in paleoecology. Paleobiology 5: 423–434.

    Article  Google Scholar 

  • Travouillon, K. J., Archer, M., Legendre, S., and Hand, S. J. (2007). Finding the minimum sample richness (MSR) for multivariate analyses: Implications for palaeoecology. Historical Biology 19: 315–320.

    Article  Google Scholar 

  • Turvey, S. T., and Blackburn, T. M. (2011). Determinants of species abundance in the Quaternary vertebrate fossil record. Paleobiology 37: 537–546.

    Article  Google Scholar 

  • Turvey, S. T., and Cooper, J. H. (2009). The past is another country: Is evidence for prehistoric, historical, and present-day extinction really comparable? In Turvey, S. T. (ed.), Holocene Extinctions, Oxford University Press, Oxford, pp. 193–212.

    Chapter  Google Scholar 

  • Varela, S., Lobo, J. M., and Hortal, J. (2011). Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 451–463.

    Article  Google Scholar 

  • Varner, J., Horns, J. J., Lambert, M. S., Westberg, E., Ruff, J. S., Wolfenberger, K., Beever, E. A., and Dearing, M. D. (2016). Plastic pikas: Behavioural flexibility in low-elevation pikas (Ochotona princeps). Behavioural Processes 125: 63–71.

    Article  Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81: 229–236.

    Google Scholar 

  • Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy 73: 1–28.

    Article  Google Scholar 

  • Wake, D. B., Hadly, E. A., and Ackerly, D. D. (2009). Biogeography, changing climates, and niche evolution. Proceedings of the National Academy of Sciences USA 106: 19631–19636.

    Article  Google Scholar 

  • Walker, D. (1978). Envoi. In Walker, D., and Guppy, J. C. (eds.), Biology and Quaternary Environments, Australian Academy of Science, Canberra, pp. 259–264.

    Google Scholar 

  • Walker, D. N. (1982). Early Holocene vertebrate fauna. In Frison, G. C., and Stanford, D. J. (eds.), The Agate Basin Site: A Record of the Paleoindian Occupation of the Northwestern High Plains, Academic Press, New York, pp. 274–308.

    Google Scholar 

  • Wells, R. T. (1978). Fossil mammals in the reconstruction of Quaternary environments with examples from the Australian fauna. In Walker, D., and Guppy, J. C. (eds.), Biology and Quaternary Environments, Australian Academy of Science, Canberra, pp. 103–124.

    Google Scholar 

  • Western, D., and Behrensmeyer, A. K. (2009). Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science 324: 1061–1064.

    Article  Google Scholar 

  • White, T. C. (2008). The role of food, weather and climate in limiting the abundance of animals. Biological Reviews 83: 227–248.

    Article  Google Scholar 

  • White, T. E. (1953). Studying osteological material. Plains Archaeological Conference Newsletter 6(1): 58–67.

    Google Scholar 

  • White, T. E. (1954). Preliminary analysis of the fossil vertebrates of the Canyon Ferry Reservoir area. Proceedings of the United States National Museum 103: 395–438.

    Article  Google Scholar 

  • White, T. E. (1956). The study of osteological material from the Plains. American Antiquity 21: 401–404.

    Article  Google Scholar 

  • Whittaker, R. H. (1975). Communities and Ecosystems, 2nd ed., MacMillan, New York.

    Google Scholar 

  • Whittington, H. B. (1964). Taxonomic basis of paleoecology. In Imbrie, J., and Newell, N. D. (eds.), Approaches to Paleoecology, John Wiley and Sons, New York, pp. 19–27.

    Google Scholar 

  • Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., and Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13: 1310–1324.

    Article  Google Scholar 

  • Wilkinson, D. M. (2012). Paleontology and ecology: Their common origins and later split. In Louys, J. (ed.), Paleontology in Ecology and Conservation, Springer, Berlin, pp. 9–22.

    Chapter  Google Scholar 

  • Williams, J. W., and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5: 475–482.

    Article  Google Scholar 

  • Wilson, M. (1973). The early historic fauna of southern Alberta: Some steps to interpretation. In Getty, R. M., and Fladmark, K. R. (eds.), Historical Archaeology in Northwestern North America, University of Calgary Archaeological Association, Calgary, Alberta, pp. 213–248.

    Google Scholar 

  • Wilson, M. (1974). The Casper local fauna and its fossil bison. In Frison, G. C. (ed.), The Casper Site: A Hell Gap Bison Kill on the High Plains, Academic Press, New York, pp. 125–171.

    Google Scholar 

  • Wilson, M. V. (2001). Fossils as environmental indicators: Taphonomic evidence. In Briggs, D. E., and Crowther, P. R. (eds.), Paleobiology II, Blackwell Science, Oxford, pp. 467–470.

    Chapter  Google Scholar 

  • Wilson, R. L. (1968). Systematics and faunal analysis of a Lower Pliocene vertebrate assemblage from Trego County, Kansas. Contributions from the Museum of Paleontology 22: 75–126 (University of Michigan, Ann Arbor).

  • Wing, S. L., Sues, H.-D., Potts, R., DiMichele, W. A., and Behrensmeyer, A. K. (1992). Evolutionary paleoecology. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.), Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals, University of Chicago Press, Chicago, pp. 1–13.

    Google Scholar 

  • Winkler, A. J., and Gose, W. (2003). Mammalian fauna and paleomagnetics of the Middle Irvingtonian (early Pleistocene) Fyllan Cave and Kitchen Door localities, Travis County, Texas. In Schubert, B. W., Mead, J. I., and Graham, R. W. (eds.), Ice Age Cave Faunas of North America, Indiana University Press, Bloomington, pp. 215–261.

    Google Scholar 

  • Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J.-A., Guisan, A., Heikkinen, R. K., Høye, T. T., Kühn, I., Luoto, M., Maiorano, L., Nilsson, M.-C., Normand, S., Öckinger, E., Schmidt, N. M., Termansen, M., Timmermann, A., Wardle, D. A., Aastrup, P., and Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modeling. Biological Reviews 88: 15–30.

    Article  Google Scholar 

  • Wolff, R. G. (1973). Hydrodynamic sorting and ecology of a Pleistocene mammalian assemblage from California (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 13: 91–101.

    Article  Google Scholar 

  • Wolff, R. G. (1975). Sampling and sample size in ecological analyses of fossil mammals. Paleobiology 1: 195–204.

    Article  Google Scholar 

  • Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory 20: 381–396.

    Article  Google Scholar 

  • Wolverton, S., Kennedy, J. H., and Cornelius, J. D. (2007). A paleozoological perspective on white-tailed deer (Odocoileus virginianus texana) population density and body size in central Texas. Environmental Management 39: 545–552.

    Article  Google Scholar 

  • Wolverton, S., and Lyman, R. L. (eds.) (2012). Conservation Biology and Applied Zooarchaeology, University of Arizona Press, Tucson.

    Google Scholar 

  • Wolverton, S., Nagaoka, L., and Rick, T. C. (2016). Applied Zooarchaeology: Five Case Studies, Eliot Werner Publications, Clinton Corners, NY.

    Google Scholar 

  • Woodcock, D. W. (1992). Climate reconstruction based on biological indicators. Quarterly Review of Biology 67: 457–477.

    Article  Google Scholar 

  • Woodring, W. P. (1951). Basic assumption underlying paleoecology. Science 113: 482–483.

    Google Scholar 

  • Yalden, D. W. (2001). Mammals as climatic indicators. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, John Wiley and Sons, Chichester, pp. 147–154.

    Google Scholar 

  • Yom-Tov, Y., and Geffen, E. (2011). Recent spatial and temporal changes in body size of terrestrial vertebrates: Probable causes and pitfalls. Biological Reviews 86: 531–541.

    Article  Google Scholar 

  • Zeuner, F. E. 1936. Paleobiology and climate of the past. Problems in Paleontology 1: 200–216 (Laboratory of Paleontology, Moscow University).

  • Zeuner, F. E. 1961. Faunal evidence for Pleistocene climates. Annals of the New York Academy of Science 95(1): 502–507.

    Article  Google Scholar 

Bibliography of Recent Literature

  • Adams, S. J., McDowell, M. C., and Prideaux, G. J. (2016). Understanding accumulation bias in the ecological interpretation of archaeological and paleontological sites on Kangaroo Island, South Australia. Journal of Archaeological Science: Reports 7: 715–729.

    Article  Google Scholar 

  • Álvarez-Lao, D. J. (2014). The Jou Puerta cave (Asturias, NW Spain): A MIS 3 large mammal assemblage with mixture of cold and temperate elements. Palaeogeography, Palaeoclimatology, Palaeoecology 393: 1–19.

    Article  Google Scholar 

  • Beever, E. A., O’Leary, J., Mengelt, C., West, J. M., Julius, S., Green, N., Magness, D., Petes, L., Stein, B., Nicotra, A. B., Hellmann, J. J., Robertson, A. L., Staudinger, M. D., Rosenberg, A. A., Babij, E., Brennan, J., Schuurman, G. W., and Hofmann, G. E. (2016). Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conservation Letters 9: 131–137.

    Article  Google Scholar 

  • Bennàsar, M., Cáceres, I., and Cuenca-Bescós, G. (2016). Paleoecological and microenvironmental aspects of the first European hominids inferred from the taphonomy of small mammals (Sima del Elefante, Sierra de Atapuerca, Spain). Comptes Rendus Palevol 15: 635–646.

    Article  Google Scholar 

  • Blain, H.-A., Lozano-Fernánex, I., Ollé, A., Rodríguez, J., Santonja, M., and Pérez-González, A. (2015). The continental record of Marine Isotope Stage 11 (Middle Pleistocene) on the Iberian Peninsula characterized by herpetofaunal assemblages. Journal of Quaternary Science 30: 667–678.

    Article  Google Scholar 

  • Carotenuto, F., Di Febbraro, M., Melchionna, M., Castiglione, S., Saggese, F., Serio, C., Mondanaro, A., Passaro, F., Loy, A., and Raia, P. (2016). The influence of climate on species distribution over time and space during the Late Quaternary. Quaternary Science Reviews 149: 188–199.

    Article  Google Scholar 

  • Curran, S. C., and Haile-Selassie, Y. (2016). Paleoecological reconstruction of hominin-bearing Middle Pliocene localities at Woranso-Mille, Ethiopia. Journal of Human Evolution 96: 97–112.

    Article  Google Scholar 

  • Demirel, A., Andrews, P., Yalçinkaya, I., and Ersoy, A. (2011). The taphonomy and palaeoenvironmental implications of the small mammals from Karain Cave, Turkey. Journal of Archaeological Science 38: 3048–3059.

    Article  Google Scholar 

  • Fernández-García, M., López-García, J., and Lorenzo, C. (2016). Palaeoecological implications of rodents as proxies for the Late Pleistocene–Holocene environmental and climatic changes in northeastern Iberia. Comptes Rendus Palevol 15: 707–719.

    Article  Google Scholar 

  • Graham, I., and Saunders, A. (1978). A multivariate statistical analysis of small mammal bones. In Brothwell, D. R., Thomas, K. D., and Clutton-Brock, J. (eds.), Research Problems in Zooarchaeology, Occasional Publication No. 3, Institute of Archaeology, University of London, London, pp. 59–67.

  • Grayson, D. K. (2000). The Homestead Cave mammals. In Madsen, D. B. (ed.), Late Quaternary Paleoecology in the Great Basin, Bulletin 130, Utah Geological Survey, Salt Lake City, pp. 67–89.

    Google Scholar 

  • Grayson, D. K. (2006). The Late Quaternary biogeographic histories of some Great Basin mammals (western USA). Quaternary Science Reviews 25: 2964–2991.

    Article  Google Scholar 

  • Hernández Fernádez, M., Sierra, M. A., and Peláez-Campomanes, P. (2007). Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in southwestern Europe during the Plio-Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 251: 500–526.

    Article  Google Scholar 

  • Hill, M. E., Jr., Hill, M. G., and Widga, C. C. (2008). Late Quaternary Bison diminution on the Great Plains of North America: Evaluating the role of human hunting versus climate change. Quaternary Science Reviews 27: 1752–1771.

    Article  Google Scholar 

  • Hocknull, S. A., Zhao, J., Feng, Y., and Webb, G. E. (2007). Responses of Quaternary rainforest vertebrates to climate change in Australia. Earth and Planetary Science Letters 264: 317–331.

    Article  Google Scholar 

  • Hordijk, K., Bosma, A., de Bruijn, H., van Dam, J., Geraedts, C., van den Hoek Ostende, L., Reumer, J., and Wessels, W. (2015). Biostratigraphical and palaeoecological implications of the small mammal assemblage from the late Early Miocene of Montalvos 2, Teruel Basin, Spain. Palaeobiodiversity and Palaeoenvironments 95: 321–346.

    Article  Google Scholar 

  • Kahlke, R.-D., García, N., Kostopoulos, D. S., Lacombat, F., Lister, A. M., Mazza, P. P., Spassov, N., and Titov, V. V. (2011). Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quaternary Science Reviews 30: 1368–1395.

    Article  Google Scholar 

  • Kohn, M. J., and McKay, M. P. (2012). Paleoecology of Late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology 326-328: 42–53.

    Article  Google Scholar 

  • Kovarovic, K. (2012). Paleoecology and paleoenvironment: A case study of Plio-Pleistocene mammals from Laetoli. Nature Education Knowledge 4(4): 25.

    Google Scholar 

  • Krajcarz, M., Krajcarz, M. T., Nadachowski, A., and Sytnyk, O. (2012). Remains of small mammals from fossil burrows in the archaeological Pleistocene site Ihrovytsya (western Ukraine). Acta Zoologica Cracoviensia 55: 89–96.

    Article  Google Scholar 

  • Laplana, C., Sevilla, P., Blain, H.-A., Arriaza, M. C., Arsuaga, J. L., Pérez-González, A., and Baquedano, E. (2016). Cold-climate rodent indicators for the Late Pleistocene of central Iberia: New data from the Buena Pinta Cave (Pinilla del Valle, Madrid region, Spain). Comptes Rendus Palevol 15: 696–706.

    Article  Google Scholar 

  • Le Fur, S., Fara, E., Mackaye, H. T., Vignaud, P., and Brunet, M. (2009). The mammal assemblage of the hominid site TM266 (Late Miocene, Chad Basin): Ecological structure and paleoenvironmental implications. Naturwissenschaften 96: 565–574.

    Article  Google Scholar 

  • Legendre, S., Montuire, S., Maridet, O., and Escarguel, G. (2005). Rodents and climate: A new model for estimating past temperatures. Earth and Planetary Science Letters 235: 408–420.

    Article  Google Scholar 

  • Lesur, J., Faith, J. T., Bon, F., Dessie, A., Ménard, C., and Bruxelles, L. (2016). Paleoenvironmental and biogeographic implications of terminal Pleistocene large mammals from the Ziway–Shala Basin, Main Ethiopian Rift, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 449: 567–579.

    Article  Google Scholar 

  • López, J. M., Chiavazza, H., and Rosi, M. I. (2016). Small mammal remains recovered from two archaeological sites in northwestern Mendoza (Late Holocene, Argentina): Taxonomic composition, taphonomic issues and paleoenvironmental implications. Quaternary International 391: 26–37.

    Article  Google Scholar 

  • Lyman, R. L. (2013). Taxonomic composition and body-mass distribution in the terminal Pleistocene mammalian fauna from the Marmes site, southeastern Washington State, USA. Paleobiology 39: 345–359.

    Article  Google Scholar 

  • Lyman, R. L. (2014). Paleoenvironmental implications of two relative indicator rodent taxa during the Pleistocene to Holocene transition in southeastern Washington State, USA. Journal of Quaternary Science 29: 691–697.

    Article  Google Scholar 

  • Lyman, R. L. (2016). The mutual climatic range technique is (usually) not the area of sympatry technique when reconstructing paleoenvironments based on faunal remains. Palaeogeography, Palaeoclimatology, Palaeoecology 454: 75–81.

    Article  Google Scholar 

  • Lyman, R. L. (2016). Holocene mammalian faunal change in the central Columbia Basin of eastern Washington State, USA. Quaternary Science Reviews 146: 66–76.

    Article  Google Scholar 

  • Macken, A. C., Prideaux, G. J., and Reed, E. H. (2012). Variation and pattern in the responses of mammal faunas to Late Pleistocene climatic change in southeastern South Australia. Journal of Quaternary Science 27: 415–424.

    Article  Google Scholar 

  • Marín, A. B., González-Morales, M. R., and Estévez, J. (2011). Paleoclimatic inference of the mid-Holocene record of monk seal (Monachus monachus) in the Cantabrian coast. Proceedings of the Geologists’ Association 122: 113–124.

    Article  Google Scholar 

  • McDowell, M. C., Bestland, E. A., Bertuch, F., Ayliffe, L. A., Hellstrom, J. C., Jacobsen, G. E., and Prideaux, G. J. (2013). Chronology, stratigraphy and palaeoenvironmental interpretation of a Late Pleistocene to mid-Holocene cave accumulation on Kangaroo Island, South Australia. Boreas 42: 974–994.

    Google Scholar 

  • Montuire, S., Maridet, O., and Legendre, S. (2006). Late Miocene–Early Pliocene temperature estimates in Europe using rodents. Palaeogeography, Palaeoclimatology, Palaeoecology 238: 247–262.

    Article  Google Scholar 

  • Nielsen, E. (2013). Response of the Lateglacial fauna to climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 391: 99–110.

    Article  Google Scholar 

  • Owen-Smith, N. (2013). Contrasts in the large herbivore faunas of the southern continents in the Late Pleistocene and the ecological implications for human origins. Journal of Biogeography 40: 1215–1224.

    Article  Google Scholar 

  • Piñero, P., Agustí, J., Blain, H.-A., and Laplana, C. (2016). Paleoenvironmental reconstruction of the Early Pleistocene site of Quibas (SE Spain) using a rodent assemblage. Comptes Rendus Palevol 15: 659–668.

    Article  Google Scholar 

  • Price, G. J. (2005). Fossil bandicoots (Marsupialia, Peramelidae) and environmental change during the Pleistocene on the Darling Downs, southeastern Queensland, Australia. Journal of Systematic Palaeontology 2: 347–356.

    Article  Google Scholar 

  • Rector, A. L., and Verrelli, B. C. (2010). Glacial cycling, large mammal community composition, and trophic adaptations in the western Cape, South Africa. Journal of Human Evolution 58: 90–102.

    Article  Google Scholar 

  • Ricánková, V. P., Robovsky, J., and Riegert, J. (2014). Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: The case of Altai-Sayan refugium. PLoS One 9: e85056.

    Article  Google Scholar 

  • Rodríguez, J. (2006). Structural continuity and multiple alternative stable states in Middle Pleistocene European mammalian communities. Palaeogeography, Palaeoclimatology, Palaeoecology 239: 355–373.

    Article  Google Scholar 

  • Salari, L. (2014). Holocene micromammals (Soricomorpha and Rodentia) from some caves of central Italy. Revue de Paléobiologie 33: 79–96.

    Google Scholar 

  • Scheifler, N., Teta, P. and Pardiñas, U. U.(2012). Small mammals (Didelphimorphia and Rodentia) of the archaeological site Calera (Pampean region, Buenos Aires Province, Argentina): Taphonomic history and Late Holocene environments. Quaternary International 278: 32–44.

    Article  Google Scholar 

  • Schmitt, D. N., Madsen, D. B., and Lupo, K. D. (2002). Small-mammal data on Early and Middle Holocene climates and biotic communities in the Bonneville Basin, USA. Quaternary Research 58: 255–260.

    Article  Google Scholar 

  • Sesé, C., and Villa, P. (2008). Micromammals (rodents and insectivores) from the early Late Pleistocene cave site of Bois Roche (Charente, France): Systematics and paleoclimatology. Geobios 41: 399–414.

    Article  Google Scholar 

  • van Dam, J. A., and Utescher, T. (2016). Plant- and micromammal-based paleoprecipitation proxies: Comparing results of the coexistence and climate-diversity approach. Palaeogeography, Palaeoclimatology, Palaeoecology 443: 18–33.

    Article  Google Scholar 

  • Walker, D. N. (2007). Vertebrate fauna. In Frison, G. C., and Walker, D. N. (eds.), Medicine Lodge Creek: Holocene Archaeology of the Eastern Big Horn Basin, Wyoming, Vol. 1, Clovis Press, Avondale, CO, pp. 177–208.

    Google Scholar 

  • Walker, D. N. (2009). Small mammals from Locality 1: A paleoenvironmental reassessment. In Larson, M. L., Kornfeld, M., and Frison, G. C. (eds.), Hell Gap: A Stratified Paleoindian Campsite at the Edge of the Rockies, University of Utah Press, Salt Lake City, pp. 429–433.

    Google Scholar 

  • Widga, C. (2013). Evolution of the High Plains Paleoindian landscape: The paleoecology of Great Plains faunal assemblages. In Knell, E. J., and Muñiz, M. P. (eds.), Paleoindian Lifeways of the Cody Complex, University of Utah Press, Salt Lake City, pp. 69–92.

    Google Scholar 

  • Wilczynski, J., Miekina, B., Lipecki, G., Lõugas, L., Marciszak, A., Rzebik-Kowalska, B., Stworzewicz, E., Szyndlar, Z., and Wertz, K. (2012). Faunal remains from Borsuka Cave—An example of local climate variability during Late Pleistocene in southern Poland. Acta Zoologica Cracoviensia 55: 131–155.

    Article  Google Scholar 

  • Wolverton, S. (2002). Zooarchaeological evidence of Prairie taxa in central Missouri during the mid-Holocene. Quaternary Research 58: 200–204.

    Article  Google Scholar 

Download references

Acknowledgments

Comments on an early draft by J. Tyler Faith, Matthew G. Hill, Bryan Hockett, Jim I. Mead, and two anonymous reviewers were helpful. I particularly thank Faith and Hockett for their detailed suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Lyman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyman, R.L. Paleoenvironmental Reconstruction from Faunal Remains: Ecological Basics and Analytical Assumptions. J Archaeol Res 25, 315–371 (2017). https://doi.org/10.1007/s10814-017-9102-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10814-017-9102-6

Keywords

Navigation