Skip to main content
Log in

Nano Silver-Coated Porous Silicon-Based Surface-Enhanced Raman Spectroscopy Substrate for Low-Concentration Dengue NS1 Protein Detection

  • Published:
Journal of Applied Spectroscopy Aims and scope

Detection of nonstructural protein 1 (NS1) in saliva is a potential solution to noninvasive, early dengue detection. However, NS1 in saliva detected using enzyme-linked immunosorbent assay reports only 64.7% sensitivity and is undetectable using rapid test kits even in acute cases. Exploiting surface-enhanced Raman spectroscopy (SERS) and silicon (Si) as a low-cost, abundant material, a nano silver-coated porous silicon SERS substrate was developed for the novel detection of low-concentration NS1. The conventional wet lab electrochemical method was used to fabricate the PSi template, whereas the drop deposition method was used to deposit the AgNP on the PSi. Using rhodamine as the Raman marker, an enhancement factor of 53 was obtained, with a 0.01-mg/mL limit of detection (LOD), which is not spectacularly impressive. However, surprisingly, the SERS substrate surface functionalized with the dengue antibody resulted in the visibility of several peaks related to NS1 up to 0.001 mg/mL. Advanced lithography methods can further lower the LOD and enhance the performance of the PSi-based SERS substrate. Moreover, PSi-based SERS substrate fabrication allows for mass production and low costs. The study successfully developed the SERS substrate for its intended novel application: to detect low-concentration NS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New edition, World Health Organization, WHO/HTM/NTD/DEN/2009.1 (2009).

  2. K. L. Anders, N. M. Nguyet, N. T. H. Quyen, T. V. Ngoc, T. V. Tram, T. T. Gan, et al., Am. J. Trop. Med. Hyg., 87, No. 1, 165–170 (2012).

    Article  Google Scholar 

  3. Machado, Maria Barbério, Gabriel Rios, Danyelle Oliveira, T. M. Silva, S. M. Buzalaf, Marília Costa, S. V. Silva, M. S. Arago, V. D. Siqueira, and Walter, Detection of Dengue Virus Infection NS1 Antigen Using Human Saliva (2012).

  4. C. V. Raman, Nature, 121, No. 3051, 619 (1928);https://doi.org/10.1038/121619b0

  5. X. Guo, D. Wang, and R. Khan, Mater. Chem. Phys., Article ID 123291, 252 (2020); https://doi.org/10.1016/j.matchemphys.2020.123291.

  6. D. Kim, J. Kim, J. Henzie, Y. Ko, H. Lim, G. Kwon, J. Na, H.-J. Kim, Y. Yamauchi, and J. You, Chem. Eng. J., 419, Article ID 129445 (2021), https://doi.org/10.1016/j.cej.2021.129445.

  7. Y. Ma, J. Ma, Y. Zhang, Z. Zhao, C. Gu, D. Chen, J. Zhou, and T. Jiang, J. Alloys Compd., 918, Article ID 165706 (2022), https://doi.org/10.1016/j.jallcom.2022.165706.

  8. Y. Li, C. Lin, Y. Peng, J. He, and Y. Yang, Sens. Actuat. B: Chem., 365, Article ID 131974 (2022), https://doi.org/10.1016/j.snb.2022.131974.

  9. G. Fan, X. Li, S. Xu, C. Dai, Q. Xue, and H. Wang, Talanta, 235, Article ID 122814 (2021), https://doi.org/10.1016/j.talanta.2021.122814.

  10. C. Qiu, Z. Cheng, C. Lv, R. Wang, and F. Yu, Chin. Chem. Lett., 32, No. 8, 2369–2379 (2021).

    Article  Google Scholar 

  11. M. Moskovits, J. Chem. Phys., 69, No. 9, 4159–4161 (1978); https://doi.org/10.1063/1.437095.

  12. P. A. Mosier-Boss, Nanomaterials, 7, No. 6, Article ID 142 (2017), https://doi.org/10.3390/nano7060142.

  13. J. Krajczewski, R. Ambroziak, and A. Kudelski, Nanomaterials, 11, No. 1, Article ID 75, 1–25 (2021); https://doi.org/10.3390/nano1101007.

  14. L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, and W. Ruan, J. Raman Spectrosc., 46, No. 3, 287–292 (2015); https://doi.org/10.1002/jrs.4645.

  15. T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, J. Phys. Chem. B, 109, No. 43, 20186–20191 (2005); https://doi.org/10.1021/jp0534939.

    Article  Google Scholar 

  16. W. Song, X. Han, L. Chen, Y. Yang, B. Tang, W. Ji, W. Ruan, W. Xu, B. Zhao, and Y. Ozaki, J. Raman Spectrosc., 41, No. 9, 907–913 (2010); https://doi.org/10.1002/jrs.2539.

  17. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, No. 3, 909–965 (1997), https://doi.org/10.1063/1.366536.

    Article  ADS  Google Scholar 

  18. S. P. Low and N. H. Voelcker, Handbook of Porous Silicon, Second ed., Vos. 1–2, (2018), pp. 533–545; https://doi.org/10.1007/978-3-319-71381-6_38.

  19. Q. Shabir, Handbook of Porous Silicon (2014), pp. 395–401; https://doi.org/10.1007/978-3-319-05744-6_39.

  20. X. Yue, X. Zheng, G. Lv, J. Mo, X. Yu, J. Liu, Z. Jia, X. Lv, and J. Tang, Optik, 192, Article ID 162959 (2019); https://doi.org/10.1016/j.ijleo.2019.162959.

  21. N. R. Nirala, J. Asiku, H. Dvir, and G. Shtenberg, Talanta, 239, Article ID 123087 (2022); https://doi.org/10.1016/j.talanta.2021.123087.

  22. V.-T. Vo, V.-D. Phung, and S.-W. Lee, Surf. Interfaces, 25, Article ID 101181 (2021); https://doi.org/10.1016/j.surfin.2021.101181.

  23. K. Girel, E. Yantcevich, G. Arzumanyan, N. Doroshkevich, and H. Bandarenka, Phys. Status Solidi (a), 213, No. 11, 2911–2915 (2016).

  24. D. Muthukumar and G. Shtenberg, Talanta, 254, 124132 (2023).

    Article  Google Scholar 

  25. N. F. Ismail, A. R. M. Radzol, A. Z. Zulhanip, L. N. Ismail, N. S. Mohamad Hadis, and K. Y. Lee, Proc. — 2020 IEEE EMBS Conf. on Biomedical Engineering and Sciences, IECBES 2020, Article ID 9398818, 147–151 (2021); https://doi.org/10.1109/IECBES48179.2021.9398818.

  26. A. Zaher, P. Hafliger, F. Puppo, G. De Micheli, and S. Carrara, Proc. IEEE 2014 Biomedical Circuits and Systems Conf., BioCAS 2014, Article ID 6981759, pp. 448–451 (2014); https://doi.org/10.1109/BioCAS.2014.6981759.

  27. S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, and Y. Leblebici, Sens. Actuat. B: Chem., 171172, 449–457 (2012); https://doi.org/10.1016/j.snb.2012.04.089.

  28. N. F. Ismail, K. Y. Lee, L. N. Ismail, A. A. Rahim, N. M. Hadis, and A. R. M. Radzol, Proc. 2022 IEEE-EMBS Conf. on Biomedical Engineering and Sciences (IECBES), IEEE, pp. 78–83; https://doi.org/10.1109/IECBES54088.2022.10079329.

  29. R. S. Dariani and Z. Ahmadi, Optik, 124, No. 22, 5353–5356 (2013).

    Article  ADS  Google Scholar 

  30. R. B. Andreev, Ya. S. Bobovich, A. V. Bortkevich, V. D. Volosov, and M. Ya. Tsenter, J. Appl. Spectrosc., 25, No. 2, 1013–1015 (1976); https://doi.org/10.1007/BF00624296.

    Article  ADS  Google Scholar 

  31. X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, Nanotechnology, 23, No. 20, Article ID 205702 (2012); https://doi.org/10.1088/0957-4484/23/20/205702.

  32. L. Liu, S. Hou, X. Zhao, C. Liu, Z. Li, C. Li, S. Xu, G. Wang, J. Yu, C. Zhang, and B. Man, Nanomaterials, 10, No. 12, Article ID 2371, 1–16 (2020); https://doi.org/10.3390/nano10122371.

  33. P. Hildebrandt and M. Stockhurger, J. Phys. Chem., 88, No. 24, 5935–5944 (1984); https://doi.org/10.1021/j150668a038.

  34. Z. Movasaghi, S. Rehman, and I. U. Rehman, Appl. Spectrosc. Rev., 42, No. 5, 493–541 (2007), https://doi.org/10.1080/05704920701551530.

    Article  ADS  Google Scholar 

  35. R. P. Kengne-Momo, P. Daniel, F. Lagarde, Y. L. Jeyachandran, J. F. Pilard, M. J. Durand-Thouand, and G. Thouand, Int. J. Spectrosc., 2012 (2012).

  36. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, J. Raman Spectrosc., 44, No. 8, 1061–1076 (2013).

    Article  ADS  Google Scholar 

  37. F. Adar, Spectroscopy, 37, No. 2, 9–12, 25 (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. M. Radzol.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 321, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N.F., Lee, K.Y., Mohd Hadis, N.S. et al. Nano Silver-Coated Porous Silicon-Based Surface-Enhanced Raman Spectroscopy Substrate for Low-Concentration Dengue NS1 Protein Detection. J Appl Spectrosc 91, 480–488 (2024). https://doi.org/10.1007/s10812-024-01744-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01744-6

Keywords

Navigation