Skip to main content
Log in

Spectrophotometric Method Development and Validation of Empagliflozin in Active Pharmaceutical Ingredient and Tablet Dosage Form

  • Published:
Journal of Applied Spectroscopy Aims and scope

Empagliflozin, an inhibitor of SGLT-2, a sodium glucose co-transporter is found mainly in the proximal tubules of the nephronic components of the kidney. The assay of empagliflozin in its tablet form has been created using a unique, secure, and sensitive UV-spectrophotometric approach. During the development and validation of the method for the assay of empagliflozin, methanol was employed as the solvent. The maximum absorbance wavelength of the solution was determined by scanning in a UV spectrophotometer. At the specified wavelength; absorbance was measured using a variety of calibration standards. The linearity and range of the calibration curve of concentration vs. absorbance were computed. The accuracy, precision, limit of detection, limit of quantitation, and ruggedness of the analytical approach were among the metrics that were determined. A correlation coefficient of 0.999 indicated linearity within the concentration range 2–10 μg/mL. The maximum absorbance of empagliflozin in methanol was determined to be 238.5 nm. Recovery was estimated as per International Conference on Harmonization guidelines and was found to be as per the acceptance limits: 93.25%. The developed UV method was found to be precise with relative standard deviation less than 2%. The assessment of empagliflozin in its tablet formulation using a UV-spectrophotometric technique was determined to be both safe and helpful. The uniqueness of this research is based on a cost-efficient, time-saving, safe, easy, and successful approach for validating empagliflozin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chawla and K. A. Chaudhary, Diabetes & Metabolic Syndrome: Clin. Res. Rev., 13, 2001–2008 (2019).

    Google Scholar 

  2. A. Chadeve, Asian J. Pharm. Clin. Res., 13, No. 5, 16–21 (2020).

    Google Scholar 

  3. N. Padmaja, T. Desalegn, M. Sharathbabu, and G. Veerabhadram, Int. J. Pharm. Sci. Res., 9, No. 11, 4885–4889 (2018).

    Google Scholar 

  4. B. M. Ayoub, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 168, 118–122 (2016).

    Google Scholar 

  5. S. K. Godasu and S. A. Sreenivas, Int. J. Pharm. Sci. Res., 8, No. 5, 2223–2232 (2017).

    Google Scholar 

  6. D. Vinay Kumar and J. V. L. N. Seshagiri Rao, Inter. Res. J. Pharm. Med. Sci., 1, No. 5, 16–22 (2018).

  7. A. G. Susmita, G. Rajitha, Y. Ramya Yadav, and P. Uma, Asian J. Pharm. Clin. Res., 12, No. 1, 241–244 (2019).

  8. P. S. Mounika, T. K. Hemant, Y. R. Srinivasa, and K. R. Vara Prasad, Asian J. Pharm. Tech., 9, No. 3, 208–211 (2019).

  9. P. T. Nagaraju and K. Venu Gopal, Res. Rev.: J. Pharm. Analysis, 3, No. 4, 27–31 (2014).

  10. A. Potdar, A. Jorige, and S. Mogili, Int. J. Pharm. Sci. Res., 11, No. 5, 2173–2180 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bina Gidwani.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 311, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Pandey, R.K., Shukla, S.S. et al. Spectrophotometric Method Development and Validation of Empagliflozin in Active Pharmaceutical Ingredient and Tablet Dosage Form. J Appl Spectrosc 91, 405–410 (2024). https://doi.org/10.1007/s10812-024-01734-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01734-8

Keywords

Navigation