Skip to main content
Log in

Rapid Identification and Classification of Metal Waste by Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The rapid identification and classification of metal garbage has been experimentally investigated. By combining laser-induced breakdown spectroscopy (LIBS) and machine learning, metal garbage can be effectively identified through spectral analysis. In this work, a novel method for metal garbage classification was developed, and a LIBS system was self-developed. As an example of metal recycling, five types of metal were adopted. Several characteristic lines of Al, W, Fe, Cu, Sn, Pb, and C were identified. For a more effective classification, principal component analysis was conducted to reduce the dimension of the spectra. Samples after the dimension reduction were classified by using K-nearest neighbors, and five types were obtained, exhibiting a final classification accuracy of 97.18%. Moreover, a mathematical model of the linear formulas between spectrum and concentration was established to achieve quantitative analysis with Fe taken as an example, laying the foundation for more refined classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Liu, Nature, 594, 333 (2021).

    Article  ADS  Google Scholar 

  2. J. N. Nriagu and J. M. Pacyna, Nature, 333, 134–139 (1988).

    Article  ADS  Google Scholar 

  3. S. S. Lam, K. O. A. Aege, and C. Sonne, Nature, 584, 192 (2020).

    Article  ADS  Google Scholar 

  4. Y. Tang, Nature, 538, 41 (2016).

    Article  Google Scholar 

  5. B. Philip, Nature Mater., 2, 76 (2003).

    Google Scholar 

  6. J. Wang, D. Yu, Y. Wang, X. Du, G. Li, B. Li, and Y. Zhao, Tianjin Sci. Rep., 11, Article ID 17816 (2021).

  7. J. Gans, M. Wolinsky, and J. Dunbar, Science, 309, No. 5739, 1387–1390 (2005).

    Article  ADS  Google Scholar 

  8. M. Z. Islam, L. J. J. Catalan, and E. K. Yanful, Environ. Sci. Technol., 38, No. 5, Article ID 1522(1–8) (2004).

  9. T. L. Xuan, P. Jégou, P. Viel, and S. Palacin, Electrochem. Commun., 10, No. 5, 699–703 (2008).

    Article  Google Scholar 

  10. A. Demirbas, J. Hazard. Mater., 157, Nos. 2–3, 220–229 (20 08 ).

  11. H. Kim, J. Lee, and E. Srivastava, J. Spectrochim. Acta B: At. Spectrosc., 184, No. 7, Article ID 106282 (2021) .

  12. J. Svato, T. Pospíil, and J. Vedral, J. Metrol. Measur. Syst., 25, No. 2, 387–402 (2018).

    Google Scholar 

  13. T. L. Xuan, P. Jégou, and P. Viel, Electrochem. Commun., 10, No. 5, 699–703 (2008).

    Article  Google Scholar 

  14. A. Demirbas, J. Hazard. Mater., 157, No. 2–3, 220–229 (2008).

    Article  Google Scholar 

  15. Y. Ma, Y. Hu, S. Qiao, Y. He, and F. Tittel, Photoacoustics, 20, Article ID 100206 (2020).

  16. S. Qiao, Y. Ma, Y. He, P. Patimisco, A. Sampaolo, and V. Spagnolo, Opt. Express, 29, 25100–25108 (2021).

    Article  ADS  Google Scholar 

  17. E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even, and M. G. Raizen, Phys. Rev. Lett., 100, No. 9, Article ID 093003 (2003).

  18. V. Contreras, R. Valencia, J. Peralta, H. Sobral, M. A. Meneses-Nava, and M. Horacio, Opt. Lett., 43, No. 10, 2260–2263 (2018).

    Article  ADS  Google Scholar 

  19. G. Rasmus, L. Mats, L. Sune, and Svanberg, Opt. Lett., 30, No. 21, 2882–2884 (2005).

  20. P. Yaroshchyk, R. Morrison, D. Body, and B. L. Chadwick, Spectrochim. Acta, B: At. Spectrosc., 60, No. 11, 1482–1485 (2005).

  21. M. A. Hossen, P. K. Diwakar, and S. Ragi, Sci. Rep., 11, Article ID 12693 (2021).

  22. C. Che, X. Lin, X. Gao, J. Lin, H. Sun, Y. Huang, and S. Tao, Microwave and Opt. Technol. Lett., 63, No. 6, 1635–1641 (2021).

    Article  Google Scholar 

  23. M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, Soil Sci. Soc. Am. J., 73, 1469–1478 (2009).

    Article  ADS  Google Scholar 

  24. S. Siano and J. Agresti, The Encyclopedia of Archaeological Sci. (2018), p. 26.

  25. C. Jessi, S. Emily, H. Jan, and O. Lukas, J. Chemometrics, 26, No. 5, 143–149 (2012).

    Article  Google Scholar 

  26. Y. Dai, S. Zhao, C. Song, and X. Gao, Microwave Opt. Technol. Lett., 63, No. 6, 1629–1634 (2021).

    Article  Google Scholar 

  27. V. C. Costa and F. M. V. Pereira, J. Chemometrics, 34, No. 12, Article ID e3248 (2020).

  28. J. Gurell, A. Bengtson, M. Falkenstrem, and B. A. M. Hansson, Spectrochim. Acta B: At. Spectrosc., 74–75, 46–50 (2012).

    Article  Google Scholar 

  29. S. Shin, Y. Moon, J. Lee, H. Jang, and S. Jeong, Plasma Sci. Technol., 21, No. 3, 88–95 (20 19).

  30. J. Shlens, A Tutorial on Principal Component Analysis. arXiv preprint, arXiv:1404.1100 (2014).

  31. M. L. Zhang and Z. H. Zhou, Pattern Rec., 40, No. 7, 2038–2048 (2007).

    Article  ADS  Google Scholar 

  32. L. E. Peterson, Scholarpedia, 4, No. 2, 1883 (20 09).

  33. L. Brunnbauer, Z. Gajarska, H. Lohninger, and A. Limbeck, TrAC: Trends Analyt. Chem., 159, Article ID 116859 (2023).

  34. Q. Zhang, Y. Liu, Y. Chen, Y. Zhangcheng, Z. Zhuo, and L. Li, Opt. Express, 28, No. 15, 22844–22855 (2020).

    Article  ADS  Google Scholar 

  35. Y. Qu, Q. Zhang, W. Yin, Y. Hu, and Y. Liu, Opt. Express, 27, No. 12, A790–A799 (2019).

    Article  ADS  Google Scholar 

  36. S. Feng, X. Qiu, G. Guo, E. Zhang, and C. Li, Analyt. Chem., 93, No. 10, 4552–4558 (2021).

    Article  Google Scholar 

  37. National Institute of Standards and Technology, "NIST Chemistry WebBook, SRD69," http://webbook.nist.gov/chemistry/form-ser/ [Retrieved 28 February 20 20].

  38. Z. Zhou, Y. Ge, X. Zhang, M. Yang, Z. Sun, and Y. Liu, J. Analyt. At. Spectrom., 38, 1569–1578 (20 23).

  39. Z. Zhou, Y. Ge, and Y. Liu, Opt. Express, 29, No. 24, 39811–39823 (2021).

    Article  ADS  Google Scholar 

  40. H. Peng, Y. Liu, C. Ying, X. Lu, G. Qing, and Y. Chen, At. Spectrosc., 42, No. 4, 203–209 (2021).

    Google Scholar 

  41. X. Lu, Y. Liu, Y. Zhou, Q. Zhang, J. Cao, and Y. Chen, Spectrochim. Acta B, 170, Article ID 105901 (20 20).

  42. L. Slavković, B. Škrbić, N. Miljević, and A. Onjia, Environ. Chem. Lett., 2, 105–108 (20 04).

  43. N. Singh and S. Dehuri, Intell. Decision Technol., 14, No. 2, 1–14 (2020).

    Google Scholar 

  44. H. U. Yuan, S. University, et. al., Comp. Sci., 39, No. 10, 182–186 (2012).

  45. B. B. Jia and M. L. Zhang, Pattern Rec., 106, 107423 (2020).

    Article  Google Scholar 

  46. L. J. Moreira and L. A. Silva, Int. Joint Conf. Neural Networks. IEEE (20 16), pp. 706–713.

  47. H. I. Djen and H. Shengmei, Chin. J. Phys., 14, No. 1, 54–63 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Liu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 310, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Gao, W., Jamali, S. et al. Rapid Identification and Classification of Metal Waste by Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 91, 397–404 (2024). https://doi.org/10.1007/s10812-024-01733-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01733-9

Keywords

Navigation