Skip to main content
Log in

Luminescence Study and Energy Transfer from Ce3+ to Yb3+ in Sr5(BO3)3Cl Phosphor

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new phosphor Sr5(BO3)3Cl:Ce3+,Yb3+, which enables near-infrared (NIR) quantum cutting, was prepared using traditional solid-state reaction methods. Its properties were examined using X-ray diffraction, photoluminescence emission, excitation spectra, and measurements of fluorescence decay. Upon excitation of Ce3+ with an ultraviolent (UV) photon at 350 nm, broadband emission at 415 nm and an intense NIR emission at 982 nm were observed. Emission at 415 nm corresponds to 5d→4f transition of Ce3+ ions, whereas the NIR emission at 982 nm is ascribed to the characteristic 2F5/22F7/2 transition of Yb3+ ions. Thorough investigation delved into how the concentration of Ce3+ affects visible and NIR emissions, decay lifetime, and energy transfer efficiency (ηETE). Detailed analysis of photoluminescence excitation, emission spectra, and fluorescence decay measurements revealed a proficient energy transfer from Ce3+ to Yb3+ ions. This transfer was demonstrated as a cooperative energy transfer (CET) process, showcasing a CET efficiency of 71.2% and a total theoretical quantum efficiency of 171.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Te-Ju Lee, Li-Yang Luo, Eric Wei-Guang Diau, Teng-Ming Chen, Bing-Ming Cheng, and Chien-Yueh Tung, Appl. Phys. Lett., 89, Article ID 131121 (2006).

  2. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys., 92, 1668–1674 (2002).

    Article  ADS  Google Scholar 

  3. Bryan M. van der Ende, Linda Aarts, and Andries Meijerink, Phys. Chem. Chem. Phys., 11, 11081–11095 (2009).

    Article  Google Scholar 

  4. O. M. ten Kate, M. de Jong, H. T. Hintzen, and E. van der Kolk, J. Appl. Phys., 114, Article ID 084502 (2013).

  5. D. L. Dexter, Phys. Rev., 108, 630–633 (1957).

    Article  ADS  Google Scholar 

  6. J. L. Sommerdijk, A. Bril, and A. W. de Jager, J. Lumin., 8, 341–343 (1974).

    Article  Google Scholar 

  7. J. L. Sommerdijk, A. Bril, and A.W. de Jager, J. Lumin., 9, 288–296 (1974).

    Article  Google Scholar 

  8. W. W. Piper, J. A. DeLuca, and F. S. Ham, J. Lumin., 8, 344–348 (1974).

    Article  Google Scholar 

  9. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science, 283, 663–666 (1999).

    Article  ADS  Google Scholar 

  10. Nobuhiro Kodama and Shinya Oishi, J. Appl. Phys., 98, Article ID 103515 (2005).

  11. Nobuhiro Kodama and Yamato Watanabe, Appl. Phys. Lett., 84, 4141–4143 (2004).

    Article  ADS  Google Scholar 

  12. R. T. Wegh, E. V. D. van Loef, and A. Meijerink, J. Lumin., 90, 111–122 (2000).

    Article  Google Scholar 

  13. Zhaogang Nie, Jiahua Zhang, Xia Zhang, Xinguang Ren, Guobin Zhang, and Xiao-jun Wang, Opt. Lett., 32, 991–993 (2007).

    Article  ADS  Google Scholar 

  14. G. Lakshminarayana, Hucheng Yang, Song Ye, Yin Liu, and Jianrong Qiu, J. Mater. Res., 23, 3090–3095 (2008).

    Article  ADS  Google Scholar 

  15. L. Li, Wei Xiantao, Chen Yonghu, Guo Changxin, and Yin Min, J. Rare Earths, 30, 197–201 (2012).

    Article  Google Scholar 

  16. Yumiko Katayama and SetsuhisaTanabe, J. Lumin., 134, 825–829 (2013).

    Article  Google Scholar 

  17. T. M. Kozhan, V. V. Kuznetsova, P. P. Pershukevich, I. I. Sergeev, and V. S. Khomenko, J. Appl. Spectrosc., 63, 849–854 (1996).

    Article  ADS  Google Scholar 

  18. B. S. Richards, Sol. Energy Mater. Sol. Cells, 90, 1189–1207 (2006).

    Article  Google Scholar 

  19. Hao Zhang, Xue Yun Liu, Feng Yang Zhao, Li Hong Zhang, Yan Fan Zhang, and Hai Guo, Opt. Mater., 34, 1034–1036 (2012).

    Article  ADS  Google Scholar 

  20. Ye Li, Qiuling Yu, Lin Huang, Jing Wang, and Qiang Su, Opt. Mater. Express, 4, 227–233 (2014).

    Article  ADS  Google Scholar 

  21. Y. Ikeda, K. Masada, H. Kurokawa, H. Motomura, M. Jinno, and K. Tachibana, J. Phys. D: Appl. Phys., 46, Article ID 065305 (2013).

  22. Z. G. Nie, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, G. B. Zhang, and X. J. Wang, J. Solid State Chem., 180, 2933–2941 (2007).

    Article  ADS  Google Scholar 

  23. Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, J. Appl. Phys., 114, Article ID 203510 (2013).

  24. Xiaobo Chen, Gregory J. Salamo, Guojian Yang, Yongliang Li, Xianlin Ding, Yan Gao, Quanlin Liu, and Jinghua Guo, Opt. Express, 21, A829–A840 (2013).

    Article  ADS  Google Scholar 

  25. R. T. Wegh, H. Donker, A. Meijerink, R. J. Lamminmäki, and J. Hölsä, Phys. Rev. B, 56, Article ID 13841 (1997).

  26. Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, J. Alloys Compd., 308, 94–97 (2000).

    Article  Google Scholar 

  27. Xianju Zhou, Guangchuan Wang, Kaining Zhou, and Qingxu Li, Opt. Mater., 35, 600–603 (2013).

    Article  ADS  Google Scholar 

  28. Zhaogang Nie, Ki-Soo Lim, Jiahua Zhang, and Xiaojun Wang, J. Lumin., 129, 844–849 (2009).

    Article  Google Scholar 

  29. Jiajia Zhou, Yu Teng, Xiaofeng Liu, Song Ye, Xiaoqiu Xu, Zhijun Ma, and Jianrong Qiu, Opt. Express, 18, 21663–21668 (2010).

    Article  ADS  Google Scholar 

  30. R. A. Talewar, C. P. Joshi, and S. V. Moharil, Opt. Mater., 55, 44–48 (2016).

    Article  ADS  Google Scholar 

  31. A. A. Pathak, R. A. Talewar, C. P. Joshi, and S. V. Moharil, J. Lumin., 179, 350–354 (2016).

    Article  Google Scholar 

  32. Praveen Kumar Shahi, Priyam Singh, Shyam Bahadur Rai, and Amresh Bahadur, Inorg. Chem., 55, 1535–1541 (2016).

    Google Scholar 

  33. Lei Zhao, Lili Han and Yuhua Wang, Opt. Mater. Express, 4, 1456–1464 (2014).

    Article  ADS  Google Scholar 

  34. Minghao Qu, Ruzhi Wang, Yan Chen, Ying Zhang, Kaiyu Li, and Hui Yan, J. Lumin., 132, 1285–1289 (2012).

    Article  Google Scholar 

  35. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. H. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, Lett., 34, 3565–3567 (2009).

    Google Scholar 

  36. Y. Teng, J. Zhou, S. Ye, and J. Qiu, J. Electrochem. Soc., 157, A1073–A1075 (2010).

    Article  Google Scholar 

  37. X. Y. Huang, X. H. Ji, and Q. Y. Zhang, J. Am. Ceram. Soc., 94, 833–837 (2011).

    Article  Google Scholar 

  38. Theodore Alekel and Douglas A. Keszler, Acta Crystallogr. C, 48, 1382–1386 (1992).

  39. R. D. Shannon, Acta Cryst. A, 32, 751–767 (1976).

    Article  Google Scholar 

  40. Qiuhong Zhang, Jing Wang, Ruijin Yu, Mei Zhang, and Qiang Su, Electrochem. Solid State Lett., 11, H335–H337 (2008).

    Article  Google Scholar 

  41. P. Dorenbos, Phys. Rev. B, 65, Article ID 235110 (2002).

  42. P. Dorenbos, J. Lumin., 91, 155–176 (2000)

    Article  Google Scholar 

  43. Takunori Taira, William M. Tulloch, and Robert L. Byer, Appl. Opt., 36, 1867–1874 (1997).

    Article  ADS  Google Scholar 

  44. Jin Deng Chen, Hai Guo, Zheng Quan Li, Hao Zhang, and Yi Xi Zhuang, Opt. Mater., 32, 998–1001 (2010).

    ADS  Google Scholar 

  45. Xinguo Zhang, Liya Zhou, Qi Pang, Jianxin Shi, and Menglian Gong, J. Phys. Chem. C, 118, 7591–7598 (2014).

    Article  Google Scholar 

  46. K. Annapoorani, P. Karthikeyan, Ch. Basavapoornima, and K. Marimuthu, J. Non-Cryst. Solids, 476, 128–136 (2017)

    Google Scholar 

  47. Ting Sun, Ai-Hua Li, Chao Xu, Yu-Heng Xu, and Rui Wang, Opt. & Laser Technol., 56, 322–325 (2014).

    Article  ADS  Google Scholar 

  48. Bing Gao, Qiqi Yan, Yu Tong, Xianghua Zhang, Hongli Ma, Jean-luc Adam, Jing Ren, and Guorong Chen, J. Lumin., 143, 181–184 (2013).

    Article  Google Scholar 

  49. Woan-Jen Yang, Liyang Luo, Teng-Ming Chen, and Niann-Shia Wang, Chem. Mater., 17, 3883–3888 (2005).

    Article  Google Scholar 

  50. Zhang Hao, Chen Jindeng, and Guo Hai, J. Rare Earths, 29, 822–825 (2011).

    Article  Google Scholar 

  51. G. E. Malashkerich, M. V. Korzhik, M. G. Lifshitz, A. L. Blinov, and M. A. Borik, JETP Lett., 47, 38–39 (1988).

    ADS  Google Scholar 

  52. G. E. Malashkerich, M. V. Korzhik, M. G. Lifshitz, V. B. Pavlenko, A. L. Blinov, and M. A. Borik, J. Glass Phys. Chem., 15, 397–407 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Talewar.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 309, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talewar, R.A. Luminescence Study and Energy Transfer from Ce3+ to Yb3+ in Sr5(BO3)3Cl Phosphor. J Appl Spectrosc 91, 389–396 (2024). https://doi.org/10.1007/s10812-024-01732-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01732-w

Keywords

Navigation