Skip to main content
Log in

Hydrocortisone UV-Vis Spectrophotometric Study: Stability, Determination of Its Acidity Constants and Quantification

  • Published:
Journal of Applied Spectroscopy Aims and scope

Hydrocortisone is a glucocorticoid-type hormone produced naturally by the organism, such that it maintains the body functional during physical or mental stress episodes. The present work focuses on the UV-Vis spectrophotometric assessment of the chemical stability of hydrocortisone in an aqueous medium during the time of analysis, determination of its acidity constants through a robust methodology that involves the usage of SQUAD software and validation of an analytical method to determine hydrocortisone by means of UV-Vis spectrophotometry, in pharmaceuticals. The acidity constant was determined as pKa 11.45 ± 0.02 (298 K), and the molar absorptivity coefficients and the molar absorptivity coefficients of the species involved in this acidity equilibrium were also determined as a function of the wavelength. The analytical method developed attained detection and quantification limits of 386 ± 3 and 1280 ± 10 nM, respectively, whereas the validation allows reliable quantification of hydrocortisone in pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Connors, G. L. Amidon, and V. J. Stella, Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed., John Wiley & Sons, Ney York (1986), https://doi.org/10.1016/S0003-0465(15)31395-1.

  2. M. Jia, W. M. Chew, Y. Feinstein, P. Skeath, and E. M. Sternberg, Analyst, 141, 2053–2060 (2016); https://doi.org/10.1039/c5an02387d.

  3. A. Singh, A. Kaushik, R. Kumar, M. Nair, and S. Bhansali, Appl. Biochem. Biotechnol., 174, 1115–1126 (2014); https://doi.org/10.1007/s12010-014-0894-2.

  4. A. Kaushik, A. Vasudev, S. K. Arya, S. K. Pasha, and S. Bhansali, Biosens. Bioelectron., 53, 499–512 (2014); https://doi.org/10.1016/j.bios.2013.09.060.

  5. A. I. Lauerma, S. Reitamo, and H. I. Maibach, J. Am. Acad. Dermatol., 24, 182–185 (1991); https://doi.org/10.1016/0190-9622(91)70024-V.

  6. A. Machanda, M. Laracy, and R. Bogner, Int. J. Pharm. Compd., 22, 66–75 (2018).

    Google Scholar 

  7. W. R. Lovallo, J. L. Robinson, D. C. Glahn, and P. T. Fox, Psychoneuroendocrinology, 35, 15–20 (2010); https://doi.org/10.1016/j.psyneuen.2009.09.010.

  8. S. Kuhlmann, C. Kirschbaum, and O. T. Wolf, Neurobiol. Learn Mem., 83, 158–162 (2005); https://doi.org/10.1016/j.nlm.2004.09.001.

  9. M. Vythilingam, E. Vermetten, G. M. Anderson, D. Luckenbaugh, E. R. Anderson, J. Snow, L. H. Staib, D. S. Charney, and J. D. Bremner, Biol. Psychiatry, 56, 101–112 (2004); https://doi.org/10.1016/j.biopsych.2004.04.002.

  10. J. Hansen and H. Bundgaalw, Int. J. Pharm., 6, 307 (1980); https://doi.org/10.1016/0378-5173(80)90114-3.

  11. A. B. Sarkar, R. Dudley, S. Melethil, J. Speidel, and G. M. Bhatt, Innov. Pharm., 2, 3–5 (2011); https://doi.org/10.24926/iip.v2i3.237.

  12. J. P. Fawcett, D. W. Boulton, R. Jiang, and D. J. Woods, Ann. Pharm., 29, 987–990 (1995); https://doi.org/10.1016/S0022-3476(71)80178-6.

  13. T. Ghafourian, P. Zandasrar, H. Hamishekar, and A. Nokhodchi, J. Controll. Rel., 99, 113–125 (2004); https://doi.org/10.1016/j.jconrel.2004.06.010.

  14. K. Sarafoglou, M. T. Gonzalez-Bolanos, C. L. Zimmerman, T. Boonstra, Y. Addo, and R. Brundage, J. Clin. Pharm., 1–5 (2014); https://doi.org/10.1002/jcph.424.

  15. L. V. Rao, J. R. Petersen, M. G. Bissell, A. O. Okorodudu, and A. A. Mohammad, J. Chromatogr. B: Biomed. Sci. Appl., 730, 123–128 (1999); https://doi.org/10.1016/S0378-4347(99)00151-6.

  16. E. Tu, P. Pearlmutter, M. Tiangco, G. Derose, L. Begdache, and A. Koh, ACS Omega, 5, 8211–8218 (2020); https://doi.org/10.1021/acsomega.0c00498.

  17. K. Balaji, G. V. R. Reddy, T. M. Reddy, and S. J. Reddy, Afr. J. Pharm. Pharmacol., 2, 157–166 (2008); http://www.academicjournals.org/ajpp.

  18. J. M. Lemus Gallego and J. Pérez Arroyo, Anal. Chim. Acta, 460, 85–97 (2002); https://doi.org/10.1016/S0003-2670(02)00138-1.

  19. S. Dalirirad and A. J. Steckl, Sens. Actuators B, Chem., 283, 79–86 (2019); https://doi.org/10.1016/j.snb.2018.11.161.

  20. J. Smajdor, R. Piech, M. Rumin, and B. Paczosa-Bator, Electrochim. Acta, 182, 67–72 (2015); https://doi.org/10.1016/j.electacta.2015.09.057.

  21. R. N. Goyal, S. Chatterjee, and A. R. S. Rana, Talanta, 83, 149–155 (2010); https://doi.org/10.1016/j.talanta.2010.08.054.

  22. D. Jenkins, C. Diallo, E. Bethea, E. Kaale, and T. Layloff, in: Calibration and Validation of Analytical MethodsA Sampling of Current Approaches, Ed. M. Stauffer, 1st ed., Intech Open, London, United Kingdom (2018), pp. 143–163; https://doi.org/10.5772/intechopen.71765.

  23. S. M. Moosavi and S. Ghassabian, in: Calibration and Validation of Analytical MethodsA Sampling of Current Approaches, Ed. M. Stauffer, 1st ed., Intech Open, London, United Kingdom (2018), pp. 109–127; https://doi.org/10.5772/intechopen.72932.

  24. M. Thompson, S. L. R. Ellison, and R. Wood, Pure Appl. Chem., 74, 835–855 (2002); https://doi.org/10.1351/pac200274050835.

  25. T. Nageswara Rao, in: Calibration and Validation of Analytical MethodsA Sampling of Current Approaches, Ed. M. Stauffer, 1st ed., Intech Open, London, United Kingdom (2018), pp. 131–142; https://doi.org/10.1021/ac00257a001.

  26. D. Rawat and D. Kumar, Nature of Electronic Transitions and Factors Affecting it: Woodward Fieser Rules and Applications of UV Spectroscopy, Delhi (2014), http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/chemistry/12.organic_spectroscopy/02.nature_of_electronic_transitions_and_the_factors_affecting_it/et/5557_et_et.pdf.

  27. K. Florey, in: Analytical Profiles of Drug Substances, Eds. A. Ciba Geigy, H. Y. Aboul Enein, A. A. Al-Badr, and S. L. Ali, Elsevier Science Inc. (1983), pp. 277–324.

  28. V. das Gupta, J. Pharm. Sci., 67, 299–302 (1978); https://doi.org/10.1002/jps.2600670305.

  29. ACD/pKα, version 12.01 for Microsoft Windows, Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario M5C 1B5 Canada (2010), https://www.acdlabs.com/products/percepta-platform/physchemsuite/pka/#product_demo (accessed November 6, 2022).

  30. S. Babić, A. J. M. Horvat, D. Mutavdžić Pavlović, and M. Kaštelan-Macan, TrACTrends in Analytical Chemistry, 26, 1043–1061 (2007); https://doi.org/10.1016/j.trac.2007.09.004.

  31. R. A. Holt and P. G. Seybold, Molecules, 27 (2022); https://doi.org/10.3390/molecules27020385.

  32. M. Lapins, S. Arvidsson, S. Lampa, A. Berg, W. Schaal, J. Alvarsson, and O. Spjuth, J. Cheminform., 10 (2018); https://doi.org/10.1186/s13321-018-0271-1.

  33. O. Toure, C.-G. Dussap, and A. Lebert, Oil Gas Sci. Technol., 68, 281–297 (2013); https://doi.org/10.2516/ogst/2012094ï.

  34. M. Palomar-Pardavé, G. Alarcón-Angeles, M. T. Ramírez-Silva, M. Romero-Romo, A. Rojas-Hernández, and

  35. S. Corona-Avendaño, J. Incl. Phenom. Macrocycl. Chem., 69, 91 (2011); https://doi.org/10.1007/s10847-010-9818-0.

  36. A. K. Rivas-Sánchez, D. S. Guzmán-Hernández, M. T. Ramírez-Silva, M. Romero-Romo, and M. Palomar-Pardavé, Dyes and Pigments, 184, Article ID 108641 (2021); https://doi.org/10.1016/j.dyepig.2020.108641.

  37. I. E. Widmer, J. J. Puder, C. König, H. Pargger, H. R. Zerkowski, J. Girard, and B. Müller, J. Clin. Endocrinology and Metab., 90, 4579–4586 (2005); https://doi.org/10.1210/jc.2005-0354.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Corona-Avendaño or M. T. Ramírez-Silva.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 168, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Reyes, G.M., Corona-Avendaño, S., Ramírez-Silva, M.T. et al. Hydrocortisone UV-Vis Spectrophotometric Study: Stability, Determination of Its Acidity Constants and Quantification. J Appl Spectrosc 91, 218–227 (2024). https://doi.org/10.1007/s10812-024-01709-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01709-9

Keywords

Navigation