Skip to main content
Log in

Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs

  • Published:
Journal of Applied Spectroscopy Aims and scope

Different manufacturers do not produce the same quality of children’s Ca–Fe–Zn oral liquid due to different production materials and processes. To improve the phenomenon of counterfeit and imitation oral liquid on the market and effectively monitor its quality, laser-induced breakdown spectroscopy (LIBS) fingerprinting with sample preparation methods can provide a tool for real-time and rapid detection of oral liquids. The sample preparation methods include filter paper adsorption (FPA), filter paper adsorption with elemental Cu (FPA with Cu), adding dropwise to glass slides (ADS), adding dropwise to glass slides with elemental Cu (ADS with Cu), and gel preparation (GP). This work collected LIBS spectrum of oral liquids from eight manufacturers. The model for eXtreme Gradient Boosting (XGBoost) was constructed for classifying oral liquids based on five sample preparation methods. The accuracy was 91.25, 94.17, 55.42, 91.25, and 91.29%, respectively. The results show that the FPA method is more straightforward, efficient, and less affected by the specificity of the color of the sample. Both ADS and GP are susceptible to the color characteristics of the sample and are not well suited to the direct detection of transparent liquids. This work demonstrated that oral liquids could be discriminated by analyzing LIBS spectrum combined with the XGBoost model. Additionally, sample preparation, like the simple FPA method, can improve the accuracy of LIBS classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang, F. Li, B. A. Hannon, D. S. Hustead, M. M. Aw, Z. Liu, K. A. Chuah, Y. L. Low, and D. T. T. Huynh, Nutrients, 13, No. 9, 3036 (2021).

    Article  Google Scholar 

  2. C. K. Lutter, L. Grummer-Strawn, and L. Rogers, Nutr. Rev., 79, No. 8, 825–846 (2021).

    Article  Google Scholar 

  3. P. Dua and R. S. Chanan, Int. J. Health Sci., II, 11688–11696 (2022).

    Google Scholar 

  4. G. Cormick, A.P. Betran, I. B. Romero, M. S. Cormick, J. M. Belizan, A. Bardach, and A. Ciapponi, Nutrients, 13, No. 2, 316 (2021).

    Article  Google Scholar 

  5. K. Li, X. F. Wang, D. Y. Li, Y. C. Chen, L. J. Zhao, X. G. Liu, Y. F. Guo, J. Shen, X. Lin, J. Deng, R. Zhou, and H. W. Deng, Clin. Intervent. Aging, 13, 2443–2452 (2018).

    Article  Google Scholar 

  6. M. Y. Hsu, E. Mina, A. Roetto, and P. E. Porporato, Cells, 9, No. 12, Article ID 2591 (2020).

  7. L. Pivina, Y. Semenova, M. D. Doşa, M. Dauletyarova, and G. Bjørklund, J. Mol. Neurosci., 68, No. 1, 1–10 (2019).

    Article  Google Scholar 

  8. C. T. Chasapis, P.-S. A. Ntoupa, C. A. Spiliopoulou, and M. E. Stefanidou, Arch. Toxic., 94, No. 5, 1443–1460 (2020).

    Article  Google Scholar 

  9. T. Rocha, J. S. Amaral, and M. Oliveira, Compr. Rev. Food Sci. Food Saf., 15, No. 1, 43–62 (2016).

    Article  Google Scholar 

  10. M. C. Nahata, Arch. Dis. Child. Fetal Neonatal Ed., 94, No. 6, 392–393 (2009).

    Article  Google Scholar 

  11. R. Thilakaratne, R. Castorina, M. Gillan, D. Han, T. Pattabhiraman, A. Nirula, M. D. Miller, M. Marty, A. Lehmkuhler, A. Mitchell, and A. Bradman, J. Exp. Sci. Environ. Epidemiol., 1–7 (2022).

  12. K. Wei, X. Cui, G. Teng, M. N. Khan, and Q. Wang, Plasma Sci. Technol., 23, No. 8, Article ID 85507 (2021).

  13. Y. Liu, P. Tan, F. Li, and Y. Qiao, Drug Test. Anal., 5, No. 6, 480–484 (2013).

    Article  Google Scholar 

  14. S. H. F. Scafi and C. Pasquini, Analyst, 126, No. 12, 2218–2224 (2001).

    Article  ADS  Google Scholar 

  15. J. Liang, C. Yan, Y. Zhang, T. Zhang, X. Zheng, and H. Li, Chemom. Intell. Lab. Syst., 197, Article ID 103930 (2020).

  16. H. Zhang, D. Hua, C. Huang, S. K. Samal, R. Xiong, F. Sauvage, K. Braeckmans, K. Remaut, and S. C. De Smedt, Adv. Mater., 32, No. 11, Article ID 1905486 (2020).

  17. Y. Jiang, D.-W. Sun, H. Pu, and Q. Wei, Trends Food Sci. Technol., 75, 10–22 (2018).

    Article  Google Scholar 

  18. G. Fu, Z. Li, J. Xu, W. Xie, P. Yang, Y. Xu, and M. Yao, Appl. Opt., 61, No. 10, 2536–2541 (2022).

    Article  ADS  Google Scholar 

  19. V. Lazic and S. Jovićević, Spectrochim. Acta B: At. Spectrosc., 101, 288–311 (2014).

    Article  Google Scholar 

  20. O. Gazeli, E. Bellou, D. Stefas, and S. Couris, Food Chem., 302, Article ID 125329 (2020).

  21. K. Wei, Q. Wang, G. Teng, X. Xu, Z. Zhao, and G. Chen, Appl. Sci., 12, No. 10, 4981 (2022).

    Article  Google Scholar 

  22. P. Yang, G. Fu, J. Wang, Z. Luo, and M. Yao, J. Anal. At. Spectrom., 100, 1–3 (2022).

    Google Scholar 

  23. S. C. Jantzi, V. Motto-Ros, F. Trichard, Y. Markushin, N. Melikechi, and A. De Giacomo, Spectrochim. Acta B: At. Spectrosc., 115, 52–63 (2016).

    Article  Google Scholar 

  24. X. Yu, Y. Li, X. Gu, J. Bao, H. Yang, and L. Sun, Environ. Monitor. Assess, 186, No. 12, 8969–8980 (2014).

    Article  Google Scholar 

  25. H. A. Harun and R. Zainal, J. Nonlinear Opt. Phys. Mater., 27, No. 2, Article ID 1850023 (2018).

  26. Y. Zhang, T. Zhang, and H. Li, Spectrochim. Acta B: At. Spectrosc., 181, Article ID 106218 (2021).

  27. G. Bilge, B. Sezer, I. H. Boyaci, K. E. Eseller, and H. Berberoglu, Spectrochim. Acta B: At. Spectrosc., 145, 115–121 (2018).

    Article  Google Scholar 

  28. S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, Talanta, 158, 185–191 (2016).

    Article  Google Scholar 

  29. S.-U. Choi, S.-C. Han, and J.-I. Yun, Spectrochim. Acta B: At. Spectrosc., 162, Article ID 105716 (2019).

  30. Y. He, X. Wang, S. Guo, A. Li, X. Xu, N. Wazir, C. Ding, T. Lu, L. Xie, M. Zhang, Y. Hao, W. Guo, and R. Liu, Appl. Opt., 58, No. 2, 422–427 (2019).

    Article  ADS  Google Scholar 

  31. A. Metzinger, E. Kovacs-Szeles, I. Almasi, and G. Galbacs, Appl. Spectrosc., 68, No. 7, 789–793 (2014).

    Article  ADS  Google Scholar 

  32. K. Keerthi, S. D. George, S. D. Kulkarni, S. Chidangil, and V. K. Unnikrishnan, Opt. Laser Technol., 147, Article ID 107622 (2022).

  33. P. Yang, Y. Zhu, X. Yang, J. Li, S. Tang, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, J. Cereal Sci., 80, 111–118 (2018).

    Article  Google Scholar 

  34. M. Perez-Rodriguez, P. M. Dirchwolf, T. V. Silva, R. N. Villafane, J. A. G. Neto, R. G. Pellerano, and E. C. Ferreira, Food Chem., 297, Article ID 124960 (2019).

  35. Q. Ruan, Q. Wu, Y. Wang, X. Liu, and F. Miao, Computing, 101, No. 6, 531–545 (2019).

    Article  MathSciNet  Google Scholar 

  36. M. G. Goydaragh, R. Taghizadeh-Mehrjardi, A. A. Jafarzadeh, J. Triantafi lis, and M. Lado, Catena, 202, Article ID 105280 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyin Yao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 167, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. J Appl Spectrosc 91, 209–217 (2024). https://doi.org/10.1007/s10812-024-01708-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01708-w

Keywords

Navigation