Skip to main content
Log in

Application of Optical Spectroscopy for the Analysis of Physiological Characteristics and Elemental Composition of Lichens of the Genus Hypogymnia with Different Degrees of Anthropotolerance

  • Published:
Journal of Applied Spectroscopy Aims and scope

The main physiological and biochemical characteristics and elemental composition of three lichen species of the genus Hypogymnia (Nyl.) Nyl. in one habitat were studied using spectroscopic methods. The model species were placed in the following order of decreasing degree of anthropotolerance: H. physodes (L.) Nyl. → H. tubulosa (Schaer.) Hav. → H. vittata (Ach.) Parrique. The contents of chlorophylls a and b, phenolic compounds, pheophytinization quotient, and antiradical activity were determined by a spectrophotometric method. The antioxidant activity was determined by an amperometric method. The physiological and biochemical parameters for each of the three species corresponded to those for background ecotopes. These parameters and the integrity of the system of correlations between the parameters were lower in species with a low degree of anthropotolerance. Twenty-three elements were found in thalli of the model species using atomic emission spectroscopy with inductively coupled plasma. They included macro- and microelements, heavy metals, and metalloids. The maximum concentrations of most elements were found in H. vittata; the minimum concentrations, in H. physodes. An analysis of the interaction between the physiological and biochemical characteristics and the contents of the elements indicated the presence of a complex system of correlations in each species. Differences in this system of correlations may have been due to the specific composition of secondary metabolites, which determine the features of adaptive reactions. The use of various optical spectroscopy methods enabled an evaluation of not only the functional specificity of the studied species but also its connection to their anthropotolerance level. Low resistance to anthropogenic influences was combined with lower coordination of physiological and biochemical characteristics and low integrity of the system of correlations. The most vulnerable species H. vittata had the minimal values of the main functional parameters, a poorer correlation of them with the elemental composition, and higher concentrations of some toxic elements. The use of a complex analysis of the physiological and biochemical characteristics and elemental compositions using various spectral methods was crucial for the bioindication and ecological physiology of lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Meysurova, A. A. Notov, A. V. Pungin, and L. N. Skrypnik, J. Appl. Spectrosc., 87, No. 5, 877–887 (2020).

    Article  ADS  Google Scholar 

  2. A. F. Meysurova, A. A. Notov, A. V. Pungin, and L. N. Skrypnik, J. Appl. Spectrosc., 88, No. 5, 987–998 (2021).

    Article  ADS  Google Scholar 

  3. Global Strategy for Plant Conservation: 2011–2020, BGCI (2012).

  4. D. E. Gimelʹbrant and E. S. Kuznetsova, Identification and Monitoring of Biologically Valuable Forests of Northwestern European Russia [in Russian], Vol. 2 (2009), pp. 93–138.

  5. S. Chakir and M. Jensen, Physiol. Plant., 105, No. 2, 256–264 (1999).

    Article  Google Scholar 

  6. T. D. V. MacKenzie, T. M. MacDonald, L. A. Dubois, and D. A. Campbell, Planta, 214, No. 1, 57–66 (2001).

    Article  Google Scholar 

  7. T. D. V. MacKenzie, M. Krol, N. P. A. Huner, and D. A. Campbell, Can. J. Bot., 80, 255 (2002).

    Article  Google Scholar 

  8. G. N. Tabalenkova, I. V. Dalʹke, and T. K. Golovko, Izv. Samar. Nauchn. Tsentra RAN, 18, No. 2, 221–225 (2016).

    Google Scholar 

  9. T. K. Golovko, I. V. Dalʹke, O. V. Dymova, R. V. Malyshev, S. N. Plyusnina, T. N. Pystina, N. A. Semenova, G. N. Tabalenkova, and M. A. Shelyakin, Izv. Komi Nauchn. Tsentra UrO RAN, 3, 23–33 (2018).

    Google Scholar 

  10. M. A. Shelyakin, I. G. Zakhozhii, I. V. Dalʹke, O. V. Dymova, R. V. Malyshev, and T. K. Golovko, Fiziol. Rast., 68, No. 6, 600–611 (2021).

    Google Scholar 

  11. A. F. Meisurova and A. A. Notov, Polevoi Zh. Biol., 3, No. 1, 64–73 (2021).

    Google Scholar 

  12. A. F. Meisurova and A. A. Notov, in: Proc. of an Int. Scientific Conf. dedicated to the 95th Birthday of Acad. E. A. Sidorovich, Mar. 9–10, 2023, Minsk, IVTs Minfina (2023), pp. 78–81.

  13. A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 83, No. 5, 832–839 (2016).

    Article  ADS  Google Scholar 

  14. T. A. Trifonova and A. S. Salmin, Yug Ross.: Ekol. Razvit., 14, No. 2, 150–163 (2019).

  15. A. K. Ezhkin, Epiphytic Lichen Cover of Dark-Needle Forests of Southern Sakhalin Region in Areas of Industrial and Natural Pollution, Candidate Dissertation in Biological Sciences, St. Petersburg (2016).

  16. Red Book of Vologda Region, Vol. 2, Plants and Fungi, VGPU, Rusʹ, Vologda (2004).

  17. Red Book of Kaliningrad Region, RGU im. I. Kanta, Kaliningrad (2010).

  18. Red Book of Udmurt Republic, Perfektum, Cheboksary (2012).

  19. Red Book of Marii El Republic, Plants. Fungi, MarGU, Ioshkar-Ola (2013).

  20. Red Book of Novgorod Region, Diton, St. Petersburg (2015).

  21. Red Book of Nizhegorod Region, Vol. 2, Vascular Plants, Algae, Lichens, Fungi, ROST-DOAFK, Kaliningrad (2017).

  22. Red Book of the Republic of Komi, Inst. Biology Komi NTs UrO RAN, Syktyvkar (2019).

  23. A. F. Meisurova and A. A. Notov, in: Proc. of the XVIth Int. Scientific Ecological Conf. dedicated to the Memory of A. V. Prisnyi, Nov. 24–26, 2020, Belgorod, ID Belgorod, NIU BelGU (2020), pp. 224–227.

  24. A. F. Meysurova, A. A. Notov, and A. V. Pungin, J. Appl. Spectrosc., 84, No. 6, 1037–1043 (2018).

    Article  ADS  Google Scholar 

  25. PNDF 16.1:2.3:3.11-98. Quantitative Chemical Analysis of Soils. Methods for Measuring Contents of Metals in Solids by Spectrometry with Inductively-Coupled Plasma [in Russian], State Committee of the RF on Environmental Protection, Moscow (2005).

  26. A. Demirbas, Energy Sources, 26, No. 5, 499–506 (2004).

    Article  Google Scholar 

  27. T. Hirayama, F. Fujikawa, I. Yosioka, and I. Kitagawa, Chem. Pharm. Bull., 23, No. 3, 695–693 (1975).

    Article  Google Scholar 

  28. T. Hirayama, F. Fujikawa, I. Yosioka, and I. Kitagawa, Chem. Pharm. Bull., 24, No. 7, 1608–1602 (1976).

    Google Scholar 

  29. M. Kosanić, B. Ranković, and J. Vukojević, J. Food Sci. Technol.-Mysore, 48, No. 5, 584–590 (2011).

  30. I. Stojanović, M. Stanković, O. Jovanović, G. Petrović, A. Šmelcerović, and G. Stojanović, Nat. Prod. Commun., 8, No. 1, 109–112 (2013).

    Google Scholar 

  31. B. Ranković, M. Kosanić, N. Manojlović, A. Rancić, and T. Stanojković, Med. Chem. Res., 23, No. 1, 408–416 (2014).

    Article  Google Scholar 

  32. G. Stojanović, I. Zlatanović, I. Zrnzević, M. Stanković, V. S. Jovanović, and B. Zlatković, Nat. Prod. Res., 32, No. 22, 2735–2739 (2018).

    Article  Google Scholar 

  33. T. H. Nash III, Lichen Biology, Cambridge University Press, Cambridge (2008), pp. 234–251.

    Google Scholar 

  34. M. Goga, J. Elečko, M. Marcinčinova, D. Ručová, M. Bačkorova, and M. Bačkor, in: Co-Evolution of Secondary Metabolites, J. M. Merillon and K. Ramawat (Eds.), Springer, Cham (2020), pp. 175–209.

  35. S. T. Behmer, S. J. Simpson, and D. Raubenheimer, Ecology, 83, 2489–2501 (2002).

    Article  Google Scholar 

  36. I. Bilʹova, M. Goga, and M. Backor, Bot. Serb., 43, No. 2, 133–142 (2019).

    Article  Google Scholar 

  37. R. Hamutoolu, M. K. Derici, E. S. Aras, A. Aslan, and D. Cansaran-Duman, Appl. Ecol. Environ. Res., 18, No. 2, 2315–2338 (2020).

    Article  Google Scholar 

  38. J. R. Exposito, E. Barreno, and M. Catala, in: Lead in Plants and the Environment, D. K. Gupta, S. Chatterjee, and C. Walther (Eds.), Springer, Cham (2020), pp. 149–170.

  39. D. Cansaran-Duman, D. Cetin, H. Simsek, and N. Coplu, Asian J. Chem., 22, No. 8, 6125-6132 (2010).

    Google Scholar 

  40. K. Molnar and E. Farkas, Ann. Bot. Fenn., 48, No. 6, 473–482 (2018).

    Article  Google Scholar 

  41. D. Olivier-Jimenez, M. Chollet-Krugler, D. Rondeau, M. A. Beniddir, S. Ferron, T. Delhaye, P. M. Allard, J. L. Wolfender, H. J. M. Sipman, R. Lücking, J. Boustie, and P. Le Pogam, Sci. Data, 6, 294 (2019).

    Article  Google Scholar 

  42. T. Goward, B. McCune, and D. Meidinger, The Lichens of British Columbia: Illustrated Keys. Foliose and Squamulose Species, Ministry of Forests, Victoria, B.C. (1994).

  43. T. Mitrović, S. Stamenković, V. Cvetković, I. Radojević, M. Z. Mladenović, M. Stanković, M. D. Topuzović, I. D. Radojević, O. D. Stefanović, S. M. Vasić, L. R. Comić, D. S. Seklić, A. D. Obradović, and S. D. Marković, Oxid. Commun., 38, No. 4, SI, 2016–2032 (2015).

  44. A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 87, No. 1, 83–91 (2020).

    Article  ADS  Google Scholar 

  45. M. Yu. Kropacheva, Yu. S. Voselʹ, K. A. Mezina, D. K. Belyanin, M. S. Melʹgunov, and I. V. Makarova, Izv. Tomsk. Politekh. Univ. Inzh. Georesur., 333, No. 9, 146–156 (2022).

    Google Scholar 

  46. J. Garty, Y. Karary, and J. Harel, Arch. Environ. Contam. Toxicol., 24, No. 4, 1455–1460 (1993).

    Article  Google Scholar 

  47. L. A. Filatova, M. G. Kusakina, and I. N. Yakusheva, Vestn. Perm. Univ., 9, No. 25, 11–14 (2008).

    Google Scholar 

  48. J. Kováčik, S. Dresler, P. Babula, J. Hladký, and I. Sowa, Plant Physiol. Biochem., 156, 591–599 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Meysurova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, pp. 74–86, January–February, 2024

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meysurova, A.F., Notov, A.A., Pungin, A.V. et al. Application of Optical Spectroscopy for the Analysis of Physiological Characteristics and Elemental Composition of Lichens of the Genus Hypogymnia with Different Degrees of Anthropotolerance. J Appl Spectrosc 91, 64–75 (2024). https://doi.org/10.1007/s10812-024-01691-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01691-2

Keywords

Navigation