Skip to main content
Log in

Use of Hyperfine Structure of Optically Detected Magnetic Resonance Spectrum of a Single NV-Defect in Diamond in Quantum Sensorics of Weak Magnetic Fields

  • Published:
Journal of Applied Spectroscopy Aims and scope

The possibility of using NV-defects in diamond at room temperature on nanometer spatial scales to measure magnetic fields was studied. For these purposes, samples with high concentrations of NV-centers are usually used, which increases the signal level but prevents the measurement of inhomogeneous fields on the scale of molecules or nanostructures. The parameters of a weak magnetic field were measured taking into account Earth's field by measuring the hyperfine structure of the optically detected magnetic resonance spectrum to calibrate and determine the resolution of a magnetic field sensor on a single NV-defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Dale and G. W. Morley, arXiv preprint, arXiv:1705.01994 (2017).

  2. F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, and J. Du, Science, 347, No. 6226, 1135–1138 (2015).

    Article  ADS  Google Scholar 

  3. H. Weinstock, SQUID Sensors: Fundamentals, Fabrication and Applications, Springer, Dordrecht (2012), pp. 179–235.

  4. J. Kitching and E. A. Donley, IEEE Sens. J., 11, No. 9, 1749–1758 (2011).

  5. T. Tierney, N. Holmes, S. Mellor, J. D. Lopez, G. Roberts, R. M. Hill, E. Boto, J. Leggett, V. Shah, M. J. Brookes, R. Bowtell, and G. R. Barnes, NeuroImage, 199, 598–608 (2019).

    Article  Google Scholar 

  6. D. Drung, C. Abmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and Th. Schurig, IEEE Trans. Appl. Supercond., 17, No. 2, 699–704 (2007).

    Article  ADS  Google Scholar 

  7. Y. Kim and I. Savukov, Sci. Rep., 6, No. 1, Article ID 24773 (2016).

  8. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nature, 455, No. 7213, 648–651 (2008).

    Article  ADS  Google Scholar 

  9. A. P. Nizovtsev, S. Ya. Kilin, F. Jelezko, I. Popa, A. Gruber, C. Tietz, and J. Wrachtrup, Opt. Spektrosk., 94, No. 6, 910–920 (2003).

    Article  Google Scholar 

  10. A. P. Nizovtsev, S. Ya. Kilin, F. Jelezko, T. Gaebal, I. Popa, A. Gruber, and J. Wrachtrup, Opt. Spektrosk., 99, No. 2, 248–260 (2005).

    Article  Google Scholar 

  11. J. Wrachtrup and F. Jelezko, J. Phys.: Condens. Matter, 18, No. 21, 807 (2006).

    ADS  Google Scholar 

  12. J. L. Webb, J. D. Clement, L. Troise, S. Ahmadi, G. J. Johansen, A. Huck, and U. L. Andersen, Appl. Phys. Lett., 114, No. 23, 231103 (2019).

    Article  ADS  Google Scholar 

  13. I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, S. Ya. Kilin, K. Sakoda, and A. M. Zheltikov, Appl. Phys. Lett., 104, Article ID 083702 (2014).

  14. S. M. Blakley, I. V. Fedotov, S. Ya. Kilin, and A. M. Zheltikov, Opt. Lett., 40, No. 16, 3727–3730 (2015).

    Article  ADS  Google Scholar 

  15. S. M. Blakley, I. V. Fedotov, L. V. Amitonova, E. E. Serebryannikov, H. Perez, S. Ya. Kilin, and A. M. Zheltikov, Opt. Lett., 41, No. 9, 2057–2060 (2016).

    Article  ADS  Google Scholar 

  16. N. S. Kukin, A. R. Muradova, A. K. Nikitin, A. A. Bukhtiyarov, P. A. Semenov, A. N. Vasilʹev, N. I. Kargin, M. O. Smirnova, S. A. Terentʹev, S. A. Tarelkin, and N. V. Kornilov, Zh. Eksp. Teor. Fiz., 164, No. 6, 1–10 (2023).

    Google Scholar 

  17. J. H. N. Loubser and J. A. van Wyk, Rep. Prog. Phys., 41, No. 8, 1201–1248 (1978).

    Article  ADS  Google Scholar 

  18. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, Nature, 477, No. 7366, 574–578 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kukin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, pp. 850–855, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukin, N.S., Muradova, A.R., Nikitin, A.K. et al. Use of Hyperfine Structure of Optically Detected Magnetic Resonance Spectrum of a Single NV-Defect in Diamond in Quantum Sensorics of Weak Magnetic Fields. J Appl Spectrosc 90, 1212–1216 (2024). https://doi.org/10.1007/s10812-024-01655-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01655-6

Keywords

Navigation