Skip to main content
Log in

Transmission Spectra of Diluted and Concentrated Magnetite Colloids in Liquid Dielectrics

  • Published:
Journal of Applied Spectroscopy Aims and scope

Transmission spectra of colloidal solutions of magnetite nanoparticles in kerosene with various volume concentrations of the solid phase and the influence on them of an external magnetic field have been studied. A pronounced maximum in the near-IR region at 740–760 nm appeared in the spectra as the magnetite concentration increased. The magnetite concentration limits at which the transmission spectra were successfully described by the Bouguer–Lambert law were established. The appearance of a maximum in the transmission spectra with increasing concentration was shown to be associated with a minimum in the spectrum of the imaginary part of the refractive index of nanosized magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge (1985).

    Google Scholar 

  2. M. Zahn, J. Nanopart. Res., 3, 73–78 (2001).

    Article  ADS  Google Scholar 

  3. H. W. Davies and J. P. Llewellyn, J. Phys. D: Appl. Phys., 13, 2327–2336 (1980).

    Article  ADS  Google Scholar 

  4. J. P. Llewellyn, J. Phys. D: Appl. Phys., 16, 95–104 (1983).

    Article  ADS  Google Scholar 

  5. B. R. Jennings, M. Xu, and P. J. Ridler, Proc. R. Soc. A, 456, 891–907 (2000).

    Article  ADS  Google Scholar 

  6. F. Donatini, S. Neveu, and J. Monin, J. Magn. Magn. Mater., 162, 69–74 (1996).

    Article  ADS  Google Scholar 

  7. R. V. Mehta, Rajesh Patel, and R. V. Upadhyay, Phys. Rev. B: Condens. Matter Mater. Phys., 74, Article ID 195127 (2006).

  8. S. Radha, S. Mohan, and C. Pai, Phys. B: Condens. Matter., 448, 341–345 (2014).

    Article  ADS  Google Scholar 

  9. J. Philip and J. M. Laskar. J. Nanofluids, 1, 3–20 (2012).

    Article  Google Scholar 

  10. H. E. Horng, C. S. Chen, and K. L. Fang, Appl. Phys. Lett., 85, 5592–5594 (2004).

    Article  ADS  Google Scholar 

  11. J. Philip, V. Mahendran, and L. J. Felicia, J. Nanofluids, 2, 112–119 (2013).

    Article  Google Scholar 

  12. V. Mahendran and J. Philip, Sens. Actuators, B: Chem., 185, 488–495 (2013).

  13. T. Du, S. Yuan, and W. Luo, Appl. Phys. Lett., 65, 1844–1846 (1994).

    Article  ADS  Google Scholar 

  14. H. E. Horng, C. Y. Hong, S. L. Lee, C. H. Ho, S. Y. Yang, and H. C. Yang, J. Appl. Phys., 88, 5904–5908 (2000).

    Article  ADS  Google Scholar 

  15. S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen, and Y. Xia, Appl. Phys. Lett., 87, Article ID 021901 (2005).

  16. P. Das, M. Colombo, and D. Prosperi, Colloids Surf. B: Biointerfaces, 174, 42–55 (2019).

    Article  Google Scholar 

  17. P. P. Macaroff and A. R. Simioni, J. Appl. Phys., 99, Article ID 08S102 (2006).

  18. R. V. Mehta and H. S. Shah, J. Phys. D: Appl. Phys., 7, 2483–2489 (1974).

    Article  ADS  Google Scholar 

  19. M. J. Dave, P. V. Mehta, H. S. Shan, J. N. Desai, and Y. G. Naik, Indian J. Pure Appl. Phys., 6, No. 7, 364–366 (1968).

    Google Scholar 

  20. R. V. Mehta, R. V. Upadhyay, P. Rajesh, and T. Premal, J. Magn. Magn. Mater., 289, 36–38 (2005).

    Article  ADS  Google Scholar 

  21. L. Tomco, V. Zavisova, M. Koneracka, and P. Kopcansky, Czech. J. Phys., 49, No. 6, 973–979 (1999).

    Article  ADS  Google Scholar 

  22. S. Y. Yang, Y. T. Hsiao, and Y. W. Huang, J. Magn. Magn. Mater., 281, 48–52 (2004).

    Article  ADS  Google Scholar 

  23. X. Fang, Y. Xuan, and Q. Li, Nanoscale Res. Lett., 6, 237–241 (2011).

    Article  ADS  Google Scholar 

  24. V. Mahendran and J. Philip, Appl. Phys. Lett., 102, Article ID 163109 (2013).

  25. C. Zhang, S. Pu, Z. Hao, B. Wang, M. Yuan, and Y. Zhang, Nanomaterials, 12, 862 (2022).

    Article  Google Scholar 

  26. S. Han, S. Pu, Z. Hao, C. Zhang, W. Liu, S. Duan, J. Fu, M. Wu, P. Mi, X. Zeng, and M. Lahoubi, Opt. Lett., 48, 4504–4507 (2023).

    Article  ADS  Google Scholar 

  27. A. A. Zakinyan, S. S. Belykh, A. R. Zakinyan, and K. V. Yerin, J. Opt. Technol., 88, No. 3, 158–165 (2021).

    Article  Google Scholar 

  28. C. Yerin and S. Belykh, IEEE Trans. Magn., 58, No. 2, Article ID 4600704 (2022).

  29. Q. Zhang, B. Peng, J. Xu, and M. Chu, Polymers, 12, Article ID 2533 (2020).

  30. C. V. Yerin, V. I. Lykhmanova, and M. V. Yerina, Magnetohydrodynamics, 54, Nos. 1–2, 155–159 (2018).

    Google Scholar 

  31. C. V. Yerin and V. I. Vivchar, J. Magn. Magn. Mater., 498, 166144 (2020).

    Article  Google Scholar 

  32. K. V. Yerin, Inorg. Mater., 58, No. 4, 403–413 (2022).

    Article  Google Scholar 

  33. C. V. Yerin, V. I. Vivchar, and S. S. Belykh, Eurasian Phys. Tech. J., 19, No. 2, 86–92 (2022).

    Article  Google Scholar 

  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    Google Scholar 

  35. N. G. Khlebtsov, A. G. Melnikov, and V. A. Bogatyrev, Colloids Surf. A: Physicochem. Eng. Asp., 148, Nos. 1–2, 17–28 (1999).

    Article  Google Scholar 

  36. O. M. Osmolovskaya, M. G. Osmolowsky, M. P. Petrov, A. V. Voitylov, and V. V. Vojtylov, Colloids Surf. A: Physicochem. Eng. Asp., 586, Article ID 124095 (2020).

  37. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press, Bellingham (2007) [Russ. translation, Fizmatlit, Moscow (2012), pp. 129–130].

  38. N. E. Berger and V. Twersky, J. Stat. Phys., 61, Nos. 5–6, 1187–1201 (1990).

    Article  ADS  Google Scholar 

  39. A. Ishimaru and Y. Kuga, J. Opt. Soc. Am., 72, 1317–1320 (1982).

    Article  ADS  Google Scholar 

  40. H. C. van de Hulst, Light Scattering by Small Particles, Wiley, Chapman (1957) [Russ. translation, In. Lit., Moscow (1961), pp. 45–54].

  41. C.-A. Guerin, P. Mallet, and A. Sentenac, J. Opt. Soc. Am., A23, 349–358 (2006).

    Article  ADS  Google Scholar 

  42. N. Khlebtsov, I. Maksimova, I. Meglinski, L. Wang, and V. Tuchin, in: Handbook of Optical Biomedical Diagnostics, V. V. Tuchin (Ed.), SPIE Press, Bellingham (2001) [Russ. translation, Fizmatlit, Moscow (2006), pp. 42–44].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Yerin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, pp. 843–849, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerin, K.V., Vivchar, V.I. Transmission Spectra of Diluted and Concentrated Magnetite Colloids in Liquid Dielectrics. J Appl Spectrosc 90, 1205–1211 (2024). https://doi.org/10.1007/s10812-024-01654-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01654-7

Keywords

Navigation