Skip to main content
Log in

Precise Wavelengths of 4P(2P1/2) → nd 2D3/2 AND 4P(2P3/2) → nd 2D3/2,5/2 Rydberg Transitions in Neutral Potassium Calculated Via the Screening Constant Per Unit Nuclear Charge Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Photoionization of neutral potassium K I is investigated in the framework of the screening constant per unit nuclear charge (SCUNC) method. Transition energies and wavelengths belonging to 4p(2P1/2) → nd 2D3/2 and 4p(2P3/2) → nd 2D3/2,5/2 Rydberg transitions are reported. Accurate transition energies and wavelengths originating from 4p(2P1/2,3/2) levels of K I are tabulated for 20 ≤ n ≤ 100. The SCUNC wavelengths are believed to be the fi rst calculations that agree excellently with the existing experimental measurements up to n = 70 using linearly polarized laser light. The maximum shift in wavelengths relative to the experimental data is at 0.03 nm up to n = 70. New wavelengths are tabulated for n = 71–100 along with new transition energies for n = 20–100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Savukov, Phys. Rev. A, 76, Article ID 032710 (2007), https://doi.org/10.1103/PhysRevA.76.032710.

  2. O. Zatsarinny and S. S. Tayal, Phys. Rev. A, 81, Article ID 043423 (2010), https://doi.org/10.1103/PhysRevA.81.043423.

  3. N. Amin, S. Mahmood, S. U. Haq, M. A. Kalyar, M. Rafi q, and M. A. Bai, J. Quant. Spectrosc. Radiat. Transf., 109, 863 (2008), https://doi.org/10.1016/j.jqsrt.2007.09.008.

  4. A. Yar, R. Ali, and M. A. Baig, Phys. Rev. A, 87, Article ID 045401 (2013), https://doi.org/10.1103/PhysRevA.87.045401.

  5. A. Yar, R. Ali, and M. A. Baig, Phys. Rev. A, 88, Article ID 033405 (2013), https://doi.org/10.1103/PhysRevA.88.033405.

  6. M. A. Kalyar, A. Yar, J. Iqbal, R. Ali, and M. A. Baig, Opt. & Laser Technol., 77, 72 (2016), https://doi.org/10.1016/j.optlastec.2015.09.001.

    Article  ADS  Google Scholar 

  7. S. Noll, J. M. C. Plane, W. Feng, B. Proxauf, S. Kimeswenger, and W. Kausch, JGR: Atmosphere, 124, 6612–6629 (2019), https://doi.org/10.1029/2018JD030044.

  8. E. Keles, M. Mallonn, C. V. Essen, T. A. Carroll, X. Alexoudi, L. Pino, I. Ilyin, K. Poppenhäger, D. Kitzmann, V. Nascimbeni, D. Jake, J. D. Turner, and K. G. Strassmeier, Monthly Notice. Royal Astronom. Soc.: Lett., 489, L37–L41 (2019), https://doi.org/10.1093/mnrasl/slz123.

  9. N. F. Allard, F. Spiegelman, T. Leininger, and P. Molliere, Astronom. Astrophys., 628, A120 (2019), https://doi.org/10.1051/0004-6361/201935593.

    Article  ADS  Google Scholar 

  10. M. E. Weller, P. Beiersdorfer, T. ELockard, G. V. Brown, A. McKelvey, J. Nilsen, R. Shepherd, V. A. Soukhanovskii, M. P. Hill , L. M. R. Hobbs, D. Burridge, D. J. Hoarty, J. Morton, L. Wilson, S. J. Rose, and P. Hatfi eld, Astrophysical J., 881, 92(1–4) (2019), https://doi.org/10.3847/1538-4357/ab2dff.

  11. A. Singor, D. Fursa, I. Bray, and R. McEachran, Atoms, 9, 42 (2021), https://doi.org/10.3390/atoms9030042.

    Article  ADS  Google Scholar 

  12. M. D. Ba, A. Diallo, J. K. Badiane, M. T. Gning, M. Sow, and I. Sakho, Rad. Phys. Chem., 153, 111 (2018), https://doi.org/10.1016/j.radphyschem.2018.09.010.

    Article  ADS  Google Scholar 

  13. J. K. Badiane, A. Diallo, M. D. Ba, M. T. Gning, M. Sow, and I. Sakho, Rad. Phys. Chem., 158, 17 (2019), https://doi.org/10.1016/j.radphyschem.2019.01.008.

    Article  ADS  Google Scholar 

  14. I. Sakho, J. Electron. Spectrosc. Rel. Phenom., 222, 40 (2018), https://doi.org/10.1016/j.elspec.2017.09.011.

    Article  Google Scholar 

  15. M. T. Gning and I. Sakho, J. At. Mol. Cond. Nano Phys., 6, 131 (2019), https://doi.org/10.26713/jamcnp.v6i3.1302.

  16. I. Sakho, J. At. Mol. Cond. Nano Phys., 6, 69 (2019), https://doi.org/10.26713/jamcnp.v6i2.1268.

  17. I. Sakho, JMP, 11, 487 (2020), https://doi.org/10.4236/jmp.2020.114031.

    Article  Google Scholar 

  18. I. Sakho, J. At. Mol. Cond. Nano Phys., 8, 15 (2021), https://doi.org/10.26713/jamcnp.v8i1.1323.

  19. I. Sakho, Int. J. Mass Spectrom., 474, Article ID 116800 (2022), https://doi.org/10.1016/j.ijms.2022.116800.

  20. I. Sakho, Physique Atomique, Systèmes Hydrogènoïdes et Systèmes Héliumoïdes, Cours & Exercices corrigés, Editions Ellipses, Paris (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sakho.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 664, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakho, I. Precise Wavelengths of 4P(2P1/2) → nd 2D3/2 AND 4P(2P3/2) → nd 2D3/2,5/2 Rydberg Transitions in Neutral Potassium Calculated Via the Screening Constant Per Unit Nuclear Charge Method. J Appl Spectrosc 90, 955–964 (2023). https://doi.org/10.1007/s10812-023-01618-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01618-3

Keywords

Navigation