Skip to main content
Log in

Forecast of Oil Content in Oilfield Wastewater by PLS and CNN Based on UV Transmittance Spectrum and Turbidity

  • Published:
Journal of Applied Spectroscopy Aims and scope

Oil content plays an important role in oilfield wastewater treatment. To investigate the forecast of oil content by UV spectrophotometry, samples of oilfield wastewater are collected, and their UV transmittance and turbidity are measured. Partial least squares (PLS) and convolutional neural networks (CNN) based on a dataset of UV transmittance spectra are used for quantitative analysis in this work. The correlation coefficient between the oil content and turbidity of oilfield wastewater is 0.924, which shows a high positive linear correlation between the oil content and turbidity. Turbidity is added to the dataset to investigate its influence on the accuracy of prediction. The results show that the accuracy of models built by transmittance and turbidity is higher than that of models built by transmittance only, which is confirmed for both PLS and CNN. With the same dataset composition, the PLS and CNN models are nearly accurate, but the CNN performs slightly better overall. This work laid the foundation for the prediction of oil content in oilfield wastewater based on UV spectrophotometry and the further implementation of online detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Al Jabri, L. Muruganandam, and D. A. Aljuboury, Global NEST J., 21, No. 2, 204–210 (2019).

  2. Xu Shirong, Duan Ming, and Zhang Jian, Chem. Eng. Oil and Gas, 38, No. 3, 258–261 (2009).

    Google Scholar 

  3. C. Y. Wang, H. H. Jiang, J. W. Gao, J. L. Zhang, and R. E. Zheng, Spectrosc. Spectr. Anal., 26, No. 6, 1080–1083 (2006).

    Google Scholar 

  4. Yang Haiya, Wu Liangzhuan, Yu Yuan, and Zhi Jinfang, Chin. J. Spectrosc. Lab., 28, No. 6, 2770–2773 (2011).

    Google Scholar 

  5. P. D. Wentzell, D. T. Andrews, J. M. Walsh, J. M. Cooley, et al., Can. J. Chem., 77, No. 3, 391–400 (1999).

    Article  Google Scholar 

  6. X. Bian, S. Li, L. Lin, X. Tan, Q. Fan, and M. Li, Anal. Chim. Acta, 925, 16–22 (2016), doi: https://doi.org/10.1016/j.aca.2016.04.029.

    Article  Google Scholar 

  7. Xiaojun Tang, Angxin Tong, Feng Zhang, and Bin Wang, Sains Malaysiana, 49, No. 8, 1773–1785 (2020).

    Article  Google Scholar 

  8. P. Li, J. Qu, Y.He, Z. Bo, and M. Pei, RSC Adv., 10, No. 35, 20691–20700 (2020), doi: https://doi.org/10.1039/c9ra10732k.

    Article  ADS  Google Scholar 

  9. W. S. Jia, H. Z. Zhang, J. Ma, G. Liang, J. H. Wang, and X. Liu, Spectrosc. Spectr. Anal., 40, No. 9, 2981–2988 (2020).

    Google Scholar 

  10. X. W. Chen, G. F. Yin, N. J. Zhao, T. T. Gan, R. F. Yang, W. Zhu, J. G. Liu, and W. Q. Liu, Spectrosc. Spectr. Anal., 39, No. 9, 2912–2916 (2019).

    Google Scholar 

  11. Wu Decao, Wei Biao, Tang Ge, Feng Peng, Tang Yuan, Liu Juan, and Xiong Shuangfei, Acta Opt. Sin., 37, No. 2, Article ID 0230007 (2017).

  12. Y. Hu and X. Wang, Sensors and Actuators B: Chem., 239, 718–726 (2017), doi: https://doi.org/10.1016/j.snb.2016.08.072.

    Article  Google Scholar 

  13. E. Carré, J. Pérot, V. Jauzein, L. Lin, and M. Lopez-Ferber, Water Sci. Technol., 76, No. 3, 633–641 (2017), doi: https://doi.org/10.2166/wst.2017.096.

    Article  Google Scholar 

  14. B. Chen, H. Wu, and S. F. Y. Li, Talanta, 120, 325–330 (2014), doi: https://doi.org/10.1016/j.talanta.2013.12.0.

    Article  Google Scholar 

  15. X. Liu and L. Wang, Water Sci. Technol., 71, No. 10, 1444–1450 (2015), doi: https://doi.org/10.2166/wst.2015.110.

    Article  Google Scholar 

  16. J. C. Cancilla, R. Aroca-Santos, K. Wierzchoś, and J. S. Torrecilla, Chemom. Intell. Lab. Systems, 156, 102–107 (2016), doi: https://doi.org/10.1016/j.chemolab.2016.05.

    Article  Google Scholar 

  17. Y. Chen, L. Song, Y. Liu, L. Yang, and D. Li, Appl. Sci., 10, No. 17, 5776 (2020), doi: https://doi.org/10.3390/app10175776.

    Article  Google Scholar 

  18. G. Puertas and M. Vázquez, J. Food Comp. Anal., 86, Article ID 103350 (2020), doi: https://doi.org/10.1016/j.jfca.2019.10335.

  19. B. Wei, K. Hao, X. Tang, and Y. Ding, Textile Res. J., Article ID 004051751881365 (2018), doi: https://doi.org/10.1177/0040517518813656.

  20. L. Norgaard, A. Saudland, J. Wagner, et al., Appl. Spectrosc., 54, No. 3, 413–419 (2000).

    Article  ADS  Google Scholar 

  21. F. Al Jabri, L. Muruganandamand, and D. A. Aljuboury, Global NEST J., 21, No. 2, 204–210 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqian Zhao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 661, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, H., Qi, H. et al. Forecast of Oil Content in Oilfield Wastewater by PLS and CNN Based on UV Transmittance Spectrum and Turbidity. J Appl Spectrosc 90, 924–930 (2023). https://doi.org/10.1007/s10812-023-01615-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01615-6

Keywords

Navigation