Skip to main content
Log in

Application of Hyperspectral Imaging to Identify Pine Seed Varieties

  • Published:
Journal of Applied Spectroscopy Aims and scope

Seed variety purity is the main indicator of seed quality, which affects crop yield and product quality. In the present study, a new method for the identification of pine nut varieties based on hyperspectral imaging and convolutional neural networks LeNet-5 was established so as to avoid the hybridization of different varieties of pine nuts, improve the identification efficiency and reduce the cost of identification. Images of 128 wavelengths in the 370–1042 nm range were acquired by hyperspectral imaging. The spectrum and image of each seed were obtained by means of black-and-white correction and region segmentation of the original image. Twenty characteristic wavelengths were extracted from the first three principal components (PCs) of principal component analysis (PCA). A support vector machine (SVM) spectral recognition model based on full wavelengths and characteristic wavelengths was established. For different species of pine seeds, the classification accuracies of the prediction set in the aforementioned datasets were 97.7 and 93.1%, respectively. The seed images of 20 characteristic wavelengths were input into LeNet-5 to improve the network structure and the number of convolution channels. The improved LeNet-5 performed better with over 99% accuracy. Such results show that the convolutional neural network is of considerable significance for fast and nondestructive identification of pine seed varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Florin, Biol. Rev., 29, No. 4, 367–389 (2010).

    Article  MathSciNet  Google Scholar 

  2. M. Hizume, Natural Sci., 8, 1–108 (1988).

    Google Scholar 

  3. L. Linchu, Guangxi Plants, 324–328 (1988).

  4. J. G. Niemann, Acta Bot. Neerl., 28, 73–88 (1979).

    Article  MathSciNet  Google Scholar 

  5. R. A. Price, J. Olsen-Stojkovich, and J. M. Lowenstein, Syst. Bot., 12, 91–97 (1987).

    Article  Google Scholar 

  6. A. Guri, P. Kefalas, and V. Roussis, Phytother. Res., 20, 263–266 (2006).

    Article  Google Scholar 

  7. G. Dong, J. Guo, C. Wang, Z. L. Chen, and D. Z. Zhu, Spectrosc. Spectr. Anal., 35, Article ID 3369 (2015).

  8. J. Zhang, L. M. Dai, and F. Cheng, Molecules, 24, 25 (2019).

    Article  Google Scholar 

  9. P. Yuan, L. Pang, L. M. Wang, and L. Yan, Int. Food Res. J., 29, No. 2, 397–405 (2022).

    Article  Google Scholar 

  10. I. Baek, M. S. Kim, B. K. Cho, C. Mo, J. Y. Barnaby, A. M. McClung, and M. Oh, Appl. Sci. (Basel), 9, No. 5, Article ID 1027 (2019).

  11. D. W. Sun, H. Y. Cen, H. Y. Weng, L. Wan, A. Abdalla, A. I. El-Manawy, Y. M. Zhu, N. Zhao, H. W. Fu, J. Tang, X. L. Li, H. K. Zheng, Q. Y. Shu, F. Liu, and Y. He, Plant Methods, 15, 16 (2019).

    Article  Google Scholar 

  12. Y. D. Bao, C. X. Mi, N. Wu, F. Liu, and Y. He, Appl. Sci. (Basel), 9, No. 19, Article ID 4119 (2019).

  13. S. S. Zhu, L. Zhou, P. Gao, Y. D. Bao, Y. He, and L. Feng, Molecules, 24, 17 (2019).

    Google Scholar 

  14. M. B. McDonald, Seed Sci. Res., 8, 265–275 (1998).

    Article  Google Scholar 

  15. J. S. C. Smith and J. C. Register, Seed Sci. Res., 8, 285–293 (1998).

    Article  Google Scholar 

  16. Z. Chaoliang and W. Bin, Crop Mag., 1, 13–16 (1998).

    Google Scholar 

  17. Q. Zhu, Z. Feng, M. Huang, and X. Zhu, Trans. Chin. Soc. Agric. Eng., 28, 271–276 (2012).

    Google Scholar 

  18. S. Javanmardi, S. H. M. Ashtiani, F. J. Verbeek, and A. Martynenko, J. Stored Prod. Res., 92 (2021).

  19. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Commun. ACM, 60, 84–90 (2017).

    Article  Google Scholar 

  20. Y. LeCun, Y. Bengio, and G. Hinton, Nature, 521, 436–444 (2015).

    Article  ADS  Google Scholar 

  21. L. B. Wang, J. Y. Liu, J. Zhang, J. Wang, and X. F. Fan, Front. Plant Sci., 13, 168–174 (2022).

    Google Scholar 

  22. W. Lu, R. T. Du, P. S. Niu, G. N. Xing, H. Luo, Y. M. Deng, and L. Shu, Front. Plant Sci., 12, Article ID 791256 (2022).

  23. H. Li, L. Zhang, H. Sun, Z. H. Rao, and H. Y. Ji, J. Food Proc. Eng., 44, Article ID e13767 (2021).

  24. G. Y. Zhao, L. Z. Quan, H. L. Li, H. Q. Feng, S. W. Li, S. H. Zhang, and R. Q. Liu, Comput. Electron. Agric., 187, Article ID 106230 (2021).

  25. N. Otsu, IEEE Trans. Syst. Man Cybern., 9, 62–66 (1979).

    Article  Google Scholar 

  26. A. Femenias, M. B. Bainotti, F. Gatius, A. J. Ramos, and S. Marin, Food Res. Int., 139, Article ID 109925 (2021).

  27. B. Hasanzadeh, Y. Abbaspour-Gilandeh, A. Soltani-Nazarloo, M. Hernandez-Hernandez, I. Gallardo-Bernal, and J. L. Hernandez-Hernandez, Horticulturae, 8, 598 (2022).

    Article  Google Scholar 

  28. M. Gabrielli, V. Lancon-Verdier, P. Picouet, and C. Maury, Chemosensors, 9, 71 (2021).

    Article  Google Scholar 

  29. R. J. Barnes, M. S. Dhanoa, Susan, and J. Lister, Appl. Spectrosc., 43, 772–777 (1989).

  30. K. Pearson, Philos. Mag., 2, Ser 6, no. 11, 559–572 (1901).

  31. D. Liu, J. Ma, D. W. Sun, H. Pu, W. Gao, J. Qu, and X. A. Zeng, Food Bioproc. Technol., 7, 3100–3108 (2014).

    Article  Google Scholar 

  32. J. Platt, Tech. Rep., 98, 14 (1998).

    Google Scholar 

  33. G. Mountrakis, J. Im, and C. Ogole, ISPRS J. Photogram. Remote Sens., 66, 247–259 (2011).

    Article  ADS  Google Scholar 

  34. K. Were, D. T. Bui, Ø. B. Dick, and B. R. Singh, Ecol. Indic., 52, 394–403 (2015).

    Article  Google Scholar 

  35. V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, and M. Chica-Rivas, Ore Geol. Rev., 71, 804–818 (2015).

    Article  Google Scholar 

  36. C. Cortes and V. Vapnik, Mach. Learn., 20, 273–297 (1995).

    Google Scholar 

  37. Y. Lecun and L. Bottou, Proc. IEEE, 86, 2278–2324 (1998).

    Article  Google Scholar 

  38. X. Zhang, L. Z. Zhou, and L. L. Zhang, Computer and Modernization, 5655–5660 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yan.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 660, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Pang, L., Guo, Y. et al. Application of Hyperspectral Imaging to Identify Pine Seed Varieties. J Appl Spectrosc 90, 916–923 (2023). https://doi.org/10.1007/s10812-023-01614-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01614-7

Keywords

Navigation