Skip to main content
Log in

Potential of UV-Vis Spectroscopy for Determining the Mechanism of the Synergistic Antioxidant Process of Kaempferol with Three Other Flavonoids and β-Carotene

  • Published:
Journal of Applied Spectroscopy Aims and scope

The antioxidant activities of flavonoid mixtures can be used to investigate the synergistic antioxidant mechanism of flavonoids. The antioxidant capacities of three flavonoids (quercetin, baicalein, and daidzein) and β-carotene in binary and ternary mixtures with kaempferol were analyzed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay by means of absorption spectroscopy. The results showed that the number of hydroxyl groups and o-hydroxyl groups had a significant effect on the antioxidant activity of the flavonoids, and the mixture of kaempferol, quercetin, and baicalein showed optimal synergistic antioxidant activity. Compared with quercetin and baicalein, kaempferol had the fastest inhibition rate, and multiple prolonged kinetic processes associated with the scavenging of DPPH radicals occurred in mixtures of kaempferol with the other flavonoids and β-carotene. Kaempferol has a potential synergistic antioxidant effect when mixed with daidzein and β-carotene, and the results suggested that this may be due to the regeneration of kaempferol after antioxidation. By means of classic UV-Vis spectroscopy, reaction details of the synergistic antioxidant process of DPPH radical scavenging by flavonoids can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Galati and P. J. O'Brien, Free Rad. Biol. Med., 37, 287–3 03 (2004).

  2. Q. Wang, Y. T. Wang, S. P. Pu, and Y. T. Zheng, Biochem. Biophys. Res. Commun., 324, 605–6 10 (2004).

  3. M. Hidalgo, C. Sanchez-Moreno, and S. de Pascual-Teresa, Food Chem., 121, 691–6 96 (2010).

  4. A. S. Meyer, M. Heinonen, and E. N. Frankel, Food Chem., 61, 71– 75 (1998).

    Article  Google Scholar 

  5. S. S. Pekkarinen, I. M. Heinonen, and A. I. Hopia, J. Sci. Food Agric., 79, 499–5 06 (1999).

  6. H. Matsufuji, R. Sasa, Y. Honma, H. Miyajima, M. Chino, T. Yamazaki, T. Shimamura, H. Ukeda, T. Matsui, K. Matsumoto, and K. Yamagata, J. Jpn. Soc. Food Sci. Technol.Nippon Shokuhin Kagaku Kogaku Kaishi, 56, 129–1 36 (2009).

  7. M. Fattore, D. Montesano, E. Pagano, R. Teta, F. Borrelli, A. Mangoni, S. Seccia, and S. Albrizio, J. Food Compos. Anal., 53, 61– 68 (2016).

    Article  Google Scholar 

  8. D. Skroza, I. G. Mekinic, S. Svilovic, V. Simat, and V. Katalinic, J. Food Compos. Anal., 38, 13– 18 (2015).

    Article  Google Scholar 

  9. J. P. A. Freitas, F. R. M. Franca, M. S. Silva, R. J. Toms, and G. F. da Silva, Korean J. Chem. Eng., 36, 1298–13 04 (2019).

  10. X. Li, Chemistry Select, 3, 13081–130 86 (2018).

  11. X. Li, X. Ouyang, R. Cai, and D. Chen, Molecules (Basel, Switzerland), 24, 1– 10 (2019).

  12. E. Hvattum, Y. Stenstrom, and D. Ekeberg, J. Mass Spectrom., 39, 1570–15 81 (2004).

  13. D. I. Tsimogiannis and V. Oreopoulou, Innov. Food Sci. Emerg. Technol., 7, 140–1 46 (2006).

  14. N. Aftab and A. Vieira, Phytother. Res., 24, 500–5 02 (2010).

  15. S. S. Wang, D. M. Wang, and Z. H. Liu, Ind. Crop. Prod., 67, 227–2 38 (2015).

  16. G. Mercado-Mercado, L. A. de la Rosa, and E. Alvarez-Parrilla, J. Mol. Struct., 1199, 1 –8 (2020).

    Article  Google Scholar 

  17. R. Liang, C. H. Chen, X. C. Ai, and J. P. Zhang, Chin. J. Mag. Res., 27, 132–1 40 (2010).

  18. C. L. Tian, X. Liu, Y. Chang, R. X. Wang, T. M. Lv, C. C. Cui, and M. C. Liu, S. Afr. J. Bot., 137, 257–2 64 (2021).

  19. Y. J. Hua, X. C. Li, W. H. Zhang, B. Chen, Y. M. Liu, X. J. Zhao, H. Xie, and D. F. Chen, J. Saudi Chem. Soc., 25, 1– 10 (2021).

    Article  Google Scholar 

  20. Q. Zhang, W. B. Yang, J. C. Liu, H. Liu, Z. Z. Lv, C. L. Zhang, D. L. Chen, and Z. G. Jiao, Oxidative Med. Cell. Longev., 1– 12 (2020).

  21. K. L. Khanduja and A. Bhardwaj, Indian J. Biochem. Biophys., 40, 416–4 22 (2003).

  22. K. P. Suja, A. Jayalekshmy, and C. Arumughan, J. Agric. Food Chem., 52, 912–9 15 (2004).

  23. Z. H. Gao, K. X. Huang, X. L. Yang, and H. B. Xu, Biochim. Biophys. Acta-Gen. Subj., 1472, 643–6 50 (1999).

  24. S. S. Qiu, C. C. Jiang, R. J. Zhou, and C. H. Li, Chin. J. Struct. Chem., 39, 57– 65 (2020).

    Google Scholar 

  25. A. G. Veiko, E. A. Lapshina, and I. B. Zavodnik, Mol. Cell. Biochem., 476, 4287–42 99 (2021).

  26. M. K. Johnson and G. Loo, Mutat. Res.-DNA Repair, 459, 211–2 18 (2000).

  27. E. A. Gonzalez and M. A. Nazareno, LWT-Food Sci. Technol., 44, 558–5 64 (2011).

  28. J. Valerga, M. Reta, and M. C. Lanari, LWT-Food Sci. Technol., 45, 28– 35 (2012).

    Google Scholar 

  29. M. Colon and C. Nerin, Eur. Food Res. Technol., 242, 211–2 20 (2016).

  30. D. Tsimogiannis, A. Bimpilas, and V. Oreopoulou, Eur. J. Lipid Sci. Technol., 119, 1 –9 (2017).

    Article  Google Scholar 

  31. B. J. F. Hudson, Food Antioxidants, Elsevier Applied Science, Lond on (1990).

  32. H. Y. Zhang, Y. M. Sung, and X. L. Wang, Chem.-Eur. J., 9, 502–5 08 (2003).

  33. M. N. Peyrat-Maillard, M. E. Cuvelier, and C. Berset, J. Am. Oil Chem. Soc., 80, 1007–10 12 (2003).

  34. L. Bateman, H. Hughes, and A. L. Morris, Discuss. Faraday Soc., 14, 190–1 99 (1953).

  35. H. J. Wang, R. Liang, L. M. Fu, R. M. Han, J. P. Zhang, and L. H. Skibsted, Food Funct., 5, 1573–15 78 (2014).

  36. T. Zhang, S. Deng, Y. H. Chen, and X. P. Du, Food and Fermentation Industries, 47, 8– 15 (2021).

    Google Scholar 

  37. J. Liang, Y. X. Tian, F. Yang, J. P. Zhang, L. H. Skibsted, Food Chem., 115, 1437–14 42 (2009).

  38. R. M. Han, Y. X. Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, and L. H. Skibsted, J. Agric. Food Chem., 55, 2384–23 91 (2007).

  39. B. Zhou, Z. Chen, Y. Chen, Z. Jia, Y. Jia, L. Zeng, L. Wu, L. Yang, and Z. L. Liu, Appl. Magn. Res., 18, 397–4 06 (2000).

  40. M. T. Schroeder, E. M. Becker, and L. H. Skibsted, J. Agric. Food Chem., 54, 3445–34 53 (2006).

  41. L. Muller, K. Frohlich, and V. Bohm, Food Chem., 129, 139–1 48 (2011).

  42. M. C. Foti, J. Agric. Food Chem., 63, 8765–87 76 (2015).

  43. S. B. Kedare and R. P. Singh, J. Food Sci. Technol., 48, 412–4 22 (2011).

  44. M. C. Foti, C. Daquino, and C. Geraci, J. Org. Chem., 69, 2309–23 14 (2004).

  45. V. Thavasi, R. P. A. Bettens, and L. P. Leong, J. Phys. Chem. A, 113, 3068–30 77 (2009).

  46. K. Sak, Mini-Rev. Med. Chem., 14, 494–5 04 (2014).

  47. L. M. Magalhães, M. A. Segundo, S. Reis, and J. Lima, Anal. Chim. Acta, 558, 310–318 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 656, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Guo, YD., Mi, YD. et al. Potential of UV-Vis Spectroscopy for Determining the Mechanism of the Synergistic Antioxidant Process of Kaempferol with Three Other Flavonoids and β-Carotene. J Appl Spectrosc 90, 883–892 (2023). https://doi.org/10.1007/s10812-023-01610-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01610-x

Keywords

Navigation