Skip to main content
Log in

Research on a System Noise Simulation and Filtering Method in Tunable Diode Laser Absorption Spectroscopy Technology

  • Published:
Journal of Applied Spectroscopy Aims and scope

To solve the problem of multiple noise interference when tunable diode laser absorption spectroscopy (TDLAS) technology is used for gas concentration detection, the principles of Kalman, moving average, wavelet transform, and singular value decomposition four filtering algorithm principles and system noise sources are analyzed. MATLAB simulation software is used to simulate the relationship curve of thermal noise, shot noise, relative intensity noise of lasers, and the characteristic value of harmonic signals. Four filtering algorithms are used to process the noise, and the best filtering algorithm is selected. Moreover, a TDLAS experimental system with ethylene gas as the detection object is designed in this paper. The experimental results show that the singular value decomposition method among the four filtering algorithms has the best effect in removing thermal noise, shot noise, and laser noise. After filtering is performed, the accuracy of the continuous detection of the system is improved, and the purpose of reducing or even eliminating system noise can be achieved. After processing occurs, the signal-to-noise ratio of the detected signal of the system is improved by 57 dB, and the noise removal rate of the system reaches 66.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gao, T. Zhang, and G. Zhang, Opt. Express, 27, No. 13, 17887–17904 (2019).

    Article  ADS  Google Scholar 

  2. G. Zhang, G. Z. Gao, T. Zhang, X. Liu, C. D. Peng, and T. D. Cai, J. Quant. Spectrosc., 241, No. 34, 748 (2020).

    Google Scholar 

  3. J. Jiang, M. X. Zhao, and G. M. Ma, IEEE Sens. J., 27, No. 99, 1 (2018).

  4. Y. Krishna, S. O'Byrne, and K. Munuswamy, Appl. Opt., 57, No. 17, Article ID 4943 (2018).

  5. J. D. Li, P. P. Zhang, and Y. J. Ding, Opt. Laser Eng., 78, No. 3-4, 503–511 (2020).

    Google Scholar 

  6. S. Pal, A. Das, S. Nandy, R. Kar, and J. Ghosh, Rev. Sci. Instrum., 38, No. 21, Article ID 4699 (2019).

  7. K. Ruxton, A. L. Chakraborty, and W. Johnstone, Sensor Actuat. B, 150, No. 1, 367–375 (2010).

    Article  Google Scholar 

  8. L. Li, N. Arsad, and G. Stewart, Opt. Commun., 284, No. 1, 312–316 (2011).

    Article  ADS  Google Scholar 

  9. J. Reid, E. L. Sherbiny, and B. K. Garside, Appl. Opt. B, 19, No. 19, 3349–3353 (1980).

    Article  ADS  Google Scholar 

  10. J. M. Poyet and Lutz Y. Light, Opt. Eng., 55, No. 7, 75–103 (2016).

  11. L. Persson, F. Andersson, and M. Andersson, Appl. Opt. B, 87, No. 3, 523–530 (2007).

    ADS  Google Scholar 

  12. S. Q. Wu, T. Kimishima, and H. Kuze, Appl. Phys., 39, No. 7A, 4034–4040 (2000).

    Google Scholar 

  13. P. W. Werle, P. Mazzinghi, and F. D'Amato, Spectrochim. Acta A, 60, No. 8–9, 1685–1705 (2004).

    Article  ADS  Google Scholar 

  14. X. W. Zhou and H. F. Liu, Laser Part Beams., 20, No. 8, 1262–1264 (2008).

    Google Scholar 

  15. J. S. Li, B. L. Yu, and H. Fischer. Appl. Spectrosc., 69, No. 4, 496–506 (2015).

    Article  ADS  Google Scholar 

  16. D. B. Zou, W. L. Chen, and Z. H. Du, Spectrosc. Spectr. Anal., 32, No. 9, 2322–2326 (2012).

    Google Scholar 

  17. Y. L. Huang, Y. G. Zhang, and X. D. Wang, IEEE T. Instrum. Meas., 60(99), 1–14 (2017).

    Google Scholar 

  18. C. L. Li, Guo, X. Q. Guo, W. H. Ji, J. L. Wei, X. B. Qiu, and W. G. Ma, Opt. Quant. Electron., 50, No. 7, Article ID 1539 (2018).

  19. D. S. Zhang, J. Guo, and Y. Jin, Opt. Eng., 56, No. 9, 1 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bo.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 654, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Fang, W., Rui, Z. et al. Research on a System Noise Simulation and Filtering Method in Tunable Diode Laser Absorption Spectroscopy Technology. J Appl Spectrosc 90, 867–875 (2023). https://doi.org/10.1007/s10812-023-01608-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01608-5

Keywords

Navigation