Skip to main content
Log in

Spectral, Optical, and Birefringence Studies of ZnO Dispersed Schiff-Based Liquid Crystal Compounds for Display Device Application

  • Published:
Journal of Applied Spectroscopy Aims and scope

Nowadays zinc nanoparticles (NPs) have attracted many applications in display technology. Due to the dispersion of nanoparticles in liquid crystals (LCs), the display properties are enhanced. The present work focuses on the significant changes in the properties of LC displays with the dispersion of ZnO NPs. Schiff-based LC compounds like pn-decyloxybenzaldehyde and corresponding pn-alkoxy anilines (10O.Om, with m = 3, 6) are prepared with the dispersion of ZnO NPs (1 wt.%). The tools used to characterize the nanoparticles in LCs are X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and modified spectrometer. With XRD studies, the size of ZnO NPs is determined. By using SEM and EDS, the homogeneous dispersion and elemental analysis is estimated. With the data of POM, the textural analysis is examined. With DSC, the phase transition temperature of different phases is noted. With the modified spectrometer, the values of refractive indices and birefringence are determined. Furthermore, with these values, the molecular orientational order parameter S is measured by the Kuczynski and Haller extrapolation methods. It is observed that the birefringence and order parameter values are decreased with the dispersion of 1 wt.% ZnO NPs in Schiff-based LC compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Bisoyi and S. Kumar, Chem. Soc. Rev., 40, 306–319 (2011).

    Article  Google Scholar 

  2. G. W. Gray, In: Handbook of Liquid Crystals, Eds. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Vol. 1, Wiley-VCH, Weinheim, 1–16 (1998).

  3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, J. Appl. Phys., 43, 7634–7638 (2004).

    Article  Google Scholar 

  4. S. T. Wu, Q. T. Zhang, and S. Marder, Jpn. J. Appl. Phys., 37, L1254–L1256 (1998).

    Article  Google Scholar 

  5. S. K. Prasad, M. V. Kumar, and C. V. Yelamaggad, Carbon, 59, 512–517 (2013).

    Article  Google Scholar 

  6. J. Branch, R. Thompson, J. W. Taylor, L. Salamanca-Riba, and L. J. Martínez-Miranda, J. Appl. Phys., 115, Article ID 164313 (2014).

  7. L. Marino, S. Marino, D. Wang, E. Bruno, and N. Scaramuzza, Soft Matter, 10, 3842–3849 (2014).

    Article  ADS  Google Scholar 

  8. A. Chandran, J. Prakash, K. K. Naik, A. K. Srivastava, R. Dąbrowski, M. Czerwiński, and A. J. Biradar, J. Mater. Chem., C2, 1844–1853 (2014).

    Google Scholar 

  9. P. Goel, M. Arora, and A.M. Biradar, J. Appl. Phys., 115, Article ID 124905 (2014).

  10. L. Wang, W. L. He, X. Xiao, M. Wang, P. Y. Yang, Z. J. Zhou, and H. Yang, H. F. Yu, and Y. F. Lu, Mater. Chem., 22, 19629–19633(2012).

    Article  Google Scholar 

  11. X. W. Zhang, D. Luo, Y. Li, M. Zhao, B. Han, M. T. Zhao, and H. T. Dai, Liq. Cryst., 42, 1257–1263 (2015).

    Article  Google Scholar 

  12. U. Manzoor, M. Islam, L. Tabassam, and S. U. Rahman, Physica E, 41, 1669–1672 (2015).

    Article  ADS  Google Scholar 

  13. J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, Appl. Phys. Lett., 93, Article ID 173104 (2008).

  14. A. V. Kabashin, A. Trudeau, and W. Marine, Appl. Phys. Lett., 91, Article ID 201101 (2007).

  15. S. D. Haranath, A. G. Sahai, and B. K. Joshi Gupta, Nanotech., 20, Article ID 42570 (2009).

  16. X. D. Li, T. P. Chen, P. Liu, Y. Liu, and K. C. Leong, Opt. Express, 21, 14131–14138 (2013).

    Article  ADS  Google Scholar 

  17. A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, J. Phys. Chem. C, 114, 18293–18297 (2010).

    Article  Google Scholar 

  18. P. Khushboo Sharma, P. Malik, and K. K. Raina, Liq. Cryst., 44, 1717–1726 (2017).

  19. K. Pal, S. Thomas, and M. L. N. M. Mohan, J. Nanosci. Nanotech., 17, 2401–2412 (2017).

    Article  Google Scholar 

  20. W. Lee, C.-Y. Wang, and Y.-C. Shih, Appl. Phys. Lett., 85, 513–515 (2004).

    Article  ADS  Google Scholar 

  21. W. T. Chen, P. S. Chen, and C. Y. Chao, Jpn. J. Appl. Phys., 48, Article ID 015006 (2009).

  22. N. Kapernaum and F. Giesselmann, Phys. Rev. E, 78, Article ID 062701 (2008).

  23. I. Haller, Prog. Solid State Chem., 10, 103–118 (1975).

    Article  Google Scholar 

  24. H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, H. Y. Jung, and D. S. Seo, Liq. Cryst., 38, 871–875 (2011).

    Article  Google Scholar 

  25. G. Pathak, R. Katiyar, K. Agrahari, A. Srivastava, R. Dabrowski, K. Garbat, and R. Manohar, Opto-Electron. Rev., 26, 11–18 (2018).

    Article  ADS  Google Scholar 

  26. H. Eskalen Özgan, O. Alver, and S. Kerli, Acta Phys. Polonica A, 127, 756–760 (2015).

  27. L. J. Martínez-Miranda, K. M. Traister, and I. Meléndez-Rodríguez, Appl. Phys. Lett., 97, Article ID 223301 (2010).

  28. P. V. Raja Shekar, D. Madhavi Latha, and V. G. K. M. Pisipati, Opt. Mater., 64, 564–568 (2017).

  29. S.-T. Wu, Phys. Rev. A, 33, No. 2, 1270–1274 (1986).

    Article  ADS  Google Scholar 

  30. H. Mada and , S. Kobayashi, Mol. Cryst. Liq. Cryst., 33, Nos. 1–2, 47–53 (1976).

    Article  Google Scholar 

  31. J. Li and S.-T. Wu, J. Appl. Phys., 96, No. 1, 170–174 (2004).

    Article  ADS  Google Scholar 

  32. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals, Wiley, New York (1983).

    Google Scholar 

  33. S. T. Wu, J. Appl. Phys., 69, 2080–2087 (1991).

    Article  ADS  Google Scholar 

  34. S. T. Wu, C. S. Wu, M. Warenghem, and M. Ismaili, Opt. Eng., 32, 1775–1780 (1993).

    Article  ADS  Google Scholar 

  35. E. M. Averyanov, J. Opt. Technol., 64, 417 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. N. R. Manepalli.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, p. 652, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprada, P., Manepalli, R.K.N.R., Madhav, B.T.P. et al. Spectral, Optical, and Birefringence Studies of ZnO Dispersed Schiff-Based Liquid Crystal Compounds for Display Device Application. J Appl Spectrosc 90, 847–859 (2023). https://doi.org/10.1007/s10812-023-01606-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01606-7

Keywords

Navigation