Skip to main content
Log in

Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Added Hydroiodic Acid

  • Published:
Journal of Applied Spectroscopy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Cesium lead triiodide (CsPbI3)-based inorganic perovskites are the most promising material for the manufacture of perovskite solar cells (PSC) due to their optimal band gap width of about 1.72 eV and high light absorption coefficient, which is characteristic for the cubic structure of CsPbI3 known as the black phase. The formation of such a structure at relatively low temperatures requires the addition of hydroiodic acid (HI) to the perovskite solution, from which the material is prepared. Structural, morphological, optical, and photoelectrical parameters of CsPbI3 were studied. The most important characteristics of CsPbI3-based PSC with maximum efficiency of 8.85% obtained when the HI acid concentration was 66 μL/mL are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Li Wang, R. Wang, Z.-K. Wang, M. Li, Y. Zhang, H. Ma, L.-S. Liao, and Y. Yang, Nano Lett., 19, No. 8, 5176–5184 (2019).

  2. E. Zakhidov, M. Imonov, V. Quvondikov, S. Nematov, I. Tajibaev, A. Saparbaev, I. Ismail, B. Shahid, and R. Yang, Appl. Phys. A, 125, 1–7 (2019).

    Article  Google Scholar 

  3. E. Zakhidov, S. Nematov, A. Saparbaev, T. Ilkhomjon. L. Nurumbetova, B. Khidirov, I. Boynazarov, A. Turgunboev, and F. Ruziyev, Uzbek Phys. J., 25, No. 1 (2023).

  4. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, Sci. Adv., 3, No. 9, Article ID e1700841 (2017).

  5. Z. Yao, W. Zhao, and S. F. Liu, J. Mater. Chem. A, 9, No. 18, 11124–11144 (2021).

    Article  Google Scholar 

  6. C. Gao, H. Dong, X. Bao, Y. Zhang, A. Saparbaev, L. Yu, S. Wen, R. Yang, and L. Dong, J. Mater. Chem. C, 6, No. 30, 8234–8241 (2018).

    Article  Google Scholar 

  7. L.-K. Gao and Y.L. Tang, ACS Omega, 6, No. 17, 11545–11555 (2021).

    Article  Google Scholar 

  8. A. Saparbaev, G. Gao, D. Zhu, Z. Liu, X. Qu, X. Bao, and R. Yang, J. Power Sources, 426, 61–66 (2019).

    Article  ADS  Google Scholar 

  9. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, No. 17, 6050–6051 (2009).

    Article  Google Scholar 

  10. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, M. J. Kim, Y. K. Kim, K. S. Kim, and T. J. Shin, Nature, 598, No. 7881, 444–450 (2021).

    Article  ADS  Google Scholar 

  11. K. Wang, Z. Li, F. Zhou, H. Wang, H. Bian, H. Zhang, Q. Wang, Z. Jin, L. Ding, and S. Liu, Adv. Energy Mater., 9, No. 42, 1902529 (2019).

    Article  Google Scholar 

  12. C. F. J. Lau, Z. Wang, N. Sakai, J. Zheng, C. H. Liao, M. Green, S. Huang, H. J. Smith, and A. H. Baillie, Adv. Energy Mater., 9, No. 36, 1901685 (2019).

    Article  Google Scholar 

  13. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, and H. Chen, Science, 15, 156–164 (2019).

    Google Scholar 

  14. Y. Chen, X. Liu, T. Wang, and Y. Zhao, Acc. Chem. Res., 54, No. 17, 3452–3461 (2021).

    Article  Google Scholar 

  15. Y. Wu, H. Wei, L. Xu, B. Cao, and H. Zeng, J. Appl. Phys., 128, No. 5, Article ID 050903 (2020).

  16. G. Yuan, S. Qin, X. Wu, H. Ding, and A. Lu, Phase Trans., 91, No. 1, 38–47 (2018).

    Article  Google Scholar 

  17. L. Wang, B. Fan, B. Zheng, Z. Yang, P. Yin, and L. Huo, Sustainable Energy Fuels, 4, No. 5, 2134–2148 (2020).

    Article  Google Scholar 

  18. Y. Guo, H. Liu, W. Li, L. Zhu, and H. Chen, Solar RRL, 4, No. 12, Article ID 2000380 (2020).

  19. A. Saparbaev, M. Zhang, V. Kuvondikov, L. Nurumbetova, I. O. Raji, I. Tajibaev, E. Zakhidov, X. Bao, and R. Yang, Solar Energy, 228, 405–412 (2021).

    Article  ADS  Google Scholar 

  20. Z. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu, P. Gao, X. Zhang, and J. You, Small, 16, No. 50, Article ID 2005246 (2020).

  21. B. Wang, Y.-H. Zhou, S. Yuan, Y.H. Lou, K.L. Wang, Y. Xia, C.H. Chen, Y. R. Shi, Z. K. Wang, and L. S. Liao, Angew. Chem. Int. Ed., 62, No. 21, Article ID e202219255 (2023).

  22. C. Weerd, L. Gomez, A. Capretti, D. M. Lebrun, E. Matsubara, J. Lin, M. Ashida, F. C. Spoor, L. D.Siebbeles, A. J. Houtepen, and K. Suenaga, Nature Commun., 9, No. 1, Article ID 4199 (2018).

  23. H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, and J. Y. Kim, Nano Energy, 7, 80–85 (2014).

    Article  Google Scholar 

  24. Q. Zhao, A. Hazarika, L. T. Schelhas, J. Liu, E. A. Gaulding, G. Li, M. Zhang, M. F. Toney, P. C. Sercel, and J. M. Luther, ACS Energy Lett., 5, No. 1, 238–247 (2019).

    Article  Google Scholar 

  25. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Smith, J. Mater. Chem. A, 3, No. 39, 19688–19695 (2015).

    Article  Google Scholar 

  26. P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, and Y. Lu, J. Phys. Chem. Lett., 7, No. 18, 3603–3608 (2016).

    Article  Google Scholar 

  27. J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han, Y. Yang, J. Liu, T. Yang, T. Chen, N. Yuan, and J. Ding, Adv. Mater., 34, No. 41, Article ID 2202735 (2022).

  28. Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, and J. Huang, Joule, 1, No. 2, 371–382 (2017).

    Article  Google Scholar 

  29. W. Chu, W. A. Saidi, J. Zhao, and O. V. Prezhdo, Angew. Chem. Int. Ed., 59, No. 16, 6435–6441 (2020).

    Article  Google Scholar 

  30. Y. Guo, H. Liu, W. Li, L. Zhu, and H. Chen, Solar RRL, 4, No. 12, Article ID 2000380 (2020).

  31. F. Muniz, T. Leitao, M. A. R. Miranda, Cássio Morilla dos Santos, and J. M. Sasaki, Crystallograph. A: Found. Adv., 72, No. 3, 385–390 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Saparbaev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, pp. 640–647, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhidov, E.A., Nematov, S., Saparbaev, A.A. et al. Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Added Hydroiodic Acid. J Appl Spectrosc 90, 830–836 (2023). https://doi.org/10.1007/s10812-023-01603-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01603-w

Keywords

Navigation