Skip to main content
Log in

Development of Method for Destruction of 4-Cyanophenol Using Photolysis and Activated Oxidative Processes

  • Published:
Journal of Applied Spectroscopy Aims and scope

The destruction of 4-cyanophenol using photolysis and activated oxidative processes in aqueous solutions was examined. The effect of UV radiation from KrCl and XeBr excilamps on its absorption spectra was studied. It was shown that in order to obtain efficient photodegradation direct photolysis must be supplemented with a KrCl excilamp with the addition of hydrogen peroxide to an aqueous solution of 4-cyanophenol in order to start the mechanism involving hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Karmazinova, S. V. Kostyuchenko, N. N. Kudryavtseva, and S. V. Khramenkova (Eds.), Ultraviolet Technologies in the Modern World: A Collective Monograph, Intellekt, Dolgoprudnyi (2012), pp. 10–12, 286–301.

  2. I. V. Sokolova and O. N. Chaikovskaya, Photochemical Methods for Solving Environmental Problems [in Russian], Tomsk State University, Tomsk (2016), pp. 32–41.

    Google Scholar 

  3. I. V. Sokolova, O. N. Chaikovskaya, and N. B. Sultanova, Opt. Atm. Okeana, 13, No. 3, 292–296 (2000).

    Google Scholar 

  4. T. I. Grishaeva, Methods of Luminescent Analysis [in Russian], Khimizdat, St. Petersburg (2003), pp. 146–153.

  5. J. F. Rabek, Experimental Methods in Photochemistry and Photophysics [Russian translation], Vol. 1, Mir, Moscow (1985), pp. 40–153.

    Google Scholar 

  6. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, É. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum-UV Excilamps: Physics, Technology and Applications [in Russian], STT, Tomsk (2011), pp. 153–295.

  7. E. S. Elin, Phenolic Compounds in the Biosphere [in Russian], Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2001), pp. 192–328.

    Google Scholar 

  8. E. S. Bobkova, E. S. Ivanova, R. A. Nevedomyi, and A. V. Sungurova, KhVÉ, 48, No. 5, 397–401 (2014).

    Google Scholar 

  9. H. Kusic, N. Koprivanac, S. Papic, and A. Loncaric Bozic, J. Photochem. Photobiol. A, 242, 1–12 (2012).

  10. I. V. Sokolova and O. N. Tchaikovskaya, Photodegradation: Mechanisms and Applications (Ed. Frank Soto), Nova Science Publishers, Inc., New York (2019), pp. 193–212.

  11. S. Kaneko, S. Yotoriyama, H. Koda, and S. Tobita, J. Phys. Chem. A, 113, No. 13, 3021–3028 (2009).

    Article  Google Scholar 

  12. N. Mikami, H. Ohkawa, and J. Miyamot, J. Pesticide Sci., 1, 273–281 (1976).

    Article  Google Scholar 

  13. N. O. Vershinin, O. N. Chaikovskaya, I. V. Sokolova, E. A. Karetnikova, Voda: Khimiya Ékologiya, No. 4, 84–91 (2013).

    Google Scholar 

  14. N. O. Vershinin, I. V. Sokolova, O. N. Chaikovskaya, and K. A. Nevolina, Zh. Prikl. Spektrosk., 82, No. 5, 772–775 (2015).

    Google Scholar 

  15. A. A. Fedorova and I. V. Sokolova, Russ. Phys. J., 64, No. 11, 2141–2146 (2022).

    Article  Google Scholar 

  16. N. Biswas, S. Wategaonkar, T. Watanabe, T. Ebata, and M. Mikami, Chem. Phys. Lett., 394, 61–67 (2004).

    Article  ADS  Google Scholar 

  17. C. Li, M. Pradhan, and W. B. Tzeng, Chem. Phys. Lett., 411, 506–510 (2005).

    Article  ADS  Google Scholar 

  18. K.-K. Lee, K.-H. Park, J.-H. Choi, J.-H. Ha, S.-J. Jeon, and M. Cho, J. Phys. Chem. A, 114, No. 8, 2757–2767 (2010).

    Article  Google Scholar 

  19. Y.-L. Songa, C.-X. Cuia, and Y.-J. Liu., J. Photochem. Photobiol. A, 317, 68–71 (2016).

  20. M. Ravera, D. Musso, F. Gosetti, C. Cassino, E. Gamalero, and D. Osella, Chemosphere, 79, 144–148 (2010).

    Article  ADS  Google Scholar 

  21. E. Popov, M. Mametkuliyev, D. Santoro, L. Liberti, and J. Eloranta, Environ. Sci. Technol., 44, No. 20, 7827–7832 (2010).

    Article  ADS  Google Scholar 

  22. I. Kalinski, D. Juretic, H. Kusic, I. Peternel, and A. L. Bozic, J. Photochem. Photobiol. A, 293, 1–11 (2014).

    Article  Google Scholar 

  23. O. A. Kholdeeva, Coll. Abstract Scientific School of Young Scientists “New Catalysts and Catalytic Processes for Solving the Problems of Clean and Resource-Saving Energy” [Electronic resource]: September 9–10, 2021, Tomsk, Russia. National Research Tomsk State University (2021) 16, URL: nccp.tsu.ru.

  24. R. Alnaizy and A. Akgerman, Adv. Environ. Res., 4, 233–244 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sokolova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, pp. 635–639, July–August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, A.A., Sokolova, I.V. Development of Method for Destruction of 4-Cyanophenol Using Photolysis and Activated Oxidative Processes. J Appl Spectrosc 90, 825–829 (2023). https://doi.org/10.1007/s10812-023-01602-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01602-x

Keywords

Navigation