Skip to main content
Log in

Spectral Characteristics of Barley Leaves During Adaptation of the Photosynthetic Apparatus to Drought

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of soil drought in the initial stages of stress development was shown not to cause significant destruction of photosynthetic membranes of barley plant leaves, as evidenced by the absence of disturbances in the photochemical activity of photosystems (PSs) 1 and 2. A moisture deficiency in the soil causes activation of the adaptation mechanism, which consists of the redistribution of energy between PSs, which minimizes the photodamage. Non-photochemical quenching of chlorophyll fluorescence, which is to a greater extent its regulated component, was found to be significantly reduced in barley plant leaves during drought. This was potentially dangerous because the chloroplasts of such plants would be vulnerable to photooxidative stress under prolonged stress. Suppression of controlled energy dissipation in the photosynthetic membrane during drought may be the limiting factor determining the resistance of barley plants to such stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ahluwalia, P. C. Singh, and R. Bhatia, Resour., Environ. Sustainability, 5, Article ID 100032 (2021); https://doi.org/10.1016/j.resenv.2021.100032.

  2. A. Kumar, A. Prasad, M. Sedlarova, B. Ksas, M. Havaux, and P. Pospisil, Free Radical Biol. Med., 160, No. 3, 894–907 (2020); https://doi.org/10.1016/j.freeradbiomed.2020.08.027.

    Article  Google Scholar 

  3. T. G. Kalyaga and N. V. Kozel, Zh. Belarus. Gos. Univ. Biol., No. 3, 46–53 (2020); https://doi.org/10.33581/2521-1722-2020-3-46-53.

  4. S. Talbi, J. A. Rojas, M. Sahrawy, M. Rodriguez-Serrano, K. E. Cardenas, M. Debouba, and L. M. Sandalio, Environ. Exp. Bot., 176, Article ID 104099 (2020); https://doi.org/10.1016/j.envexpbot.2020.104099.

  5. M. Ashraf and P. J. C. Harris, Photosynthetica, 51, No. 2, 163–190 (2013); https://doi.org/10.1007/s11099-013-0021-6.

  6. A. Sezgin, C. Altuntaş, M. Demiralay, S. Cinemre, and R. Terzi, J. Plant Physiol., 232, 65–73 (2019); https://doi.org/10.1016/j.jplph.2018.11.026.

  7. H. Kautsky and A. Hirsch, Naturwissenschaften, 19, 964–969 (1931).

    Article  ADS  Google Scholar 

  8. D. Yu. Korneev, Information Potential of the Fluorescence Induction Method [in Russian], Alʹterpress, Kiev (2002), pp. 5–7.

  9. Dual-PAM-100 Measuring System for Simultaneous Assessment of P700 and Chlorophyll Fluorescence. Instrument Description and Instructions for Users, Heinz Walz GmbH, Germany (2009), pp. 3–26.

  10. D. M. Kramer, G. Johnson, O. Kiirats, and G. E. Edwards, Photosynth. Res., 79, 209–218 (2004); https://doi.org/10.1023/B:PRES.0000015391.99477.0d.

  11. C. Klughammer and U. Schreiber, Planta, 192, 261–268 (1994); https://doi.org/10.1007/BF01089043.

  12. H. M. Kalaji, L. Rackova, V. Paganova, T. Swochyna, S. Rusinowski, and K. Sitko, Environ. Exp. Bot., 152, 149–157 (2018); https://doi.org/10.1016/j.envexpbot.2017.11.001.

  13. A. Stirbet, D. Lazar, J. Kromdijk, and Govindjee, Photosynthetica, 56, 86e104 (2018); https://doi.org/10.1007/s11099-018-0770-3.

    Article  Google Scholar 

  14. M. S. Makarenko, N. V. Kozel, A. V. Usatov, O. F. Gorbachenko, and N. G. Averina, OnLine J. Biol. Sci., 16, No. 4, 193–196 (2016); https://doi.org/10.3844/ojbsci.2016.193.198.

    Article  Google Scholar 

  15. V. G. Ladygin, Fiziol. Rast., 45, No. 5, 741–762 (1998).

    Google Scholar 

  16. N. V. Shalygo and N. V. Kozel, J. Appl. Spectrosc., 73, 301–304 (2006); https://doi.org/10.1007/s10812-006-0073-5.

  17. Y. V. Viazau, N. V. Kozel, V. P. Domanski, and N. V. Shalygo, J. Appl. Spectrosc., 81, 1019–1024 (2015); https://doi.org/10.1007/s10812-015-0044-9.

  18. D. Latowski, P. Kuczynska, and K. Strzalka, Redox Rep., 16, No. 2, 78–90 (2011); https://doi.org/10.1179/174329211X13020951739938.

  19. Y. Ueno, S. Aikawa, A. Kondo, and S. Akimoto, J. Phys. Chem. Lett., 7, 3567–3571 (2016); https://doi.org/10.1021/acs.jpclett.6b01609.

  20. F. Busch, N. P. A. Hunter, and I. Ensminger, Funct. Plant. Biol., 36, 1016–1026 (2009); https://doi.org/10.1071/FP08043.

  21. P. F. Rokitskii, Biological Statistics [in Russian], Minsk (1973), pp. 28–50.

  22. J. Manoyan, T. Samovich, N. Kozel, V. Demidchik, and L. Gabrielyan, Int. J. Hydrogen Energy, 47, No. 38, 16815–16823 (2022); https://doi.org/10.1016/j.ijhydene.2022.03.194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Kuryanchyk.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, pp. 509–515, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryanchyk, T.G., Kozel, N.V. Spectral Characteristics of Barley Leaves During Adaptation of the Photosynthetic Apparatus to Drought. J Appl Spectrosc 90, 628–634 (2023). https://doi.org/10.1007/s10812-023-01575-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01575-x

Keywords

Navigation