Skip to main content

Advertisement

Log in

Photoexcitation-Energy Deactivation in a Solution of 10-Phenyl-5,15-di-(4,6-Dichloropyrimidinyl)-Corrole at 77 K

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spectral and luminescent characteristics of a solution of 10-phenyl-5,15-di(4,6-dichloropyrimidinyl)-corrole at 77 K were studied. Effective NH-tautomerization was found to occur in the lower T1 triplet state of the long-wavelength T1-tautomer, resulting in phosphorescence being emitted only from the short-wavelength T2-tautomer. A shift of the acid–base equilibrium and deprotonation of a certain fraction of the molecules were observed at 77 K. The fluorescence and phosphorescence spectra of the deprotonated form were identified. The energy gap ΔE(S1T1) = 5570 cm–1 for the deprotonated form was found to be as large as that for the free bases. The molecular conformations of NH-tautomers for a series of corroles with various peripheral substitution architectures were optimized and their electronic absorption spectra and energy gap ΔE(S1T1) were calculated by the density functional theory method. An increase in the energy gap ΔE(S1T1) was established to be due to an increase in the energy mismatch ΔE(LUMO–LUMO+1). The observed trend was common for all types of studied molecular systems, i.e., both NH-tautomers of the free base and the deprotonated form. It was proposed that such a trend is an inherent property of the contracted corrole macrocycle, which has an excess of electron density as compared to the porphine system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. B. Ivanova, V. A. Savva, N. Zh. Mamardashvili, A. S. Starukhin, T. H. Ngo, W. Dehaen, W. Maes, and M. M. Kruk, J. Phys. Chem. A, 116, 10683–10694 (2012).

    Article  Google Scholar 

  2. M. M. Kruk, T. H. Ngo, P. Verstappen, A. S. Starukhin, J. Hofkens, W. Dehaen, and W. Maes, J. Phys. Chem. A, 116, 10695–10703 (2012).

    Article  Google Scholar 

  3. Y. H. Ajeeb, T. B. Karlovich, L. L. Gladkov, W. Maes, and M. M. Kruk, J. Appl. Spectrosc., 86, 389–395 (2019).

    Article  ADS  Google Scholar 

  4. Y. H. Ajeeb, D. V. Klenitsky, I. V. Vershilovskaya, D. V. Petrova, A. S. Semeikin, W. Maes, L. L. Gladkov, and M. M. Kruk, J. Appl. Spectrosc., 87, 421–427 (2020).

    Article  ADS  Google Scholar 

  5. D. V. Klenitsky, L. L. Gladkov, I. V. Vershilovskaya, D. V. Petrova, A. S. Semeikin, W. Maes, and M. M. Kruk, J. Appl. Spectrosc., 88, 1111–1118 (2022).

    Article  ADS  Google Scholar 

  6. L. L. Gladkov, D. V. Klenitsky, I. V. Vershilovskaya, W. Maes, and M. M. Kruk, J. Appl. Spectrosc., 89, 426–432 (2022).

    Article  ADS  Google Scholar 

  7. M. M. Kruk, J. Appl. Spectrosc., 89, 624–630 (2022).

    Article  ADS  Google Scholar 

  8. V. N. Knyukshto, H. T. Ngo, W. Dehaen, W. Maes, and M. M. Kruk, RCS Adv., 6, 43911–43915 (2016).

    Google Scholar 

  9. T. H. Ngo, F. Puntoniero, F. Nastasi, K. Robeyns, L. Van Meervelt, S. Campagna, W. Dehaen, and W. Maes, Chem. Eur. J., 16, 5691–5701 (2010).

    Article  Google Scholar 

  10. V. N. Knyukshto, K. N. Solovyov, and G. D. Egorova, Biospectroscopy, 4, 121–133 (1998).

    Article  Google Scholar 

  11. E. I. Sagun, E. I. Zenʹkevich, V. N. Knyukshto, A. Yu. Panarin, A. S. Semeikin, and T. V. Lyubimova, Opt. Spektrosk., 113, 1–14 (2012).

    Article  Google Scholar 

  12. J. Capar, J. Conradie, C. Beavers, and A. Ghosh, J. Phys. Chem. A, 119, 3452–3457 (2015).

    Article  Google Scholar 

  13. E. I. Zen’kevich, E. I. Sagun, V. N. Knyukshto, A. M. Shul’ga, A. F. Mironov, O. A. Efremova, R. Bonnett, and M. Kaddem, J. Appl. Spectrosc., 63, 502–513 (1996).

  14. D. N. Laikov, Chem. Phys. Lett., 281, 151–156 (1997).

    Article  ADS  Google Scholar 

  15. D. N. Laikov and Yu. A. Ustynyuk, Russ. Chem. Bull., 54, 820–826 (2005).

    Article  Google Scholar 

  16. M.O. Senge, S.A. MacGowan, and J. O’Brien, Chem. Commun. (Cambridge, U.K.), 51, 17031–17063 (2015).

  17. A. Eschenmoser, Ann. N. Y. Acad. Sci., 471, 108–118 (1986).

    Article  ADS  Google Scholar 

  18. M. M. Kruk, T. H. Ngo, V. A. Savva, A. S. Starukhin, W. Dehaen, and W. Maes, J. Phys. Chem. A, 116, 10704–10711 (2012).

    Article  Google Scholar 

  19. Y. H. Ajeeb, A. A. Minchenya, P. G. Klimovich, W. Maes, and M. M. Kruk, J. Appl. Spectrosc., 86, 788–794 (2019).

    Article  ADS  Google Scholar 

  20. K. Tsukahara, M. Tsunumori, and Y. Yamamoto, Inorg. Chim. Acta, 118, L21–L22 (1986).

    Article  Google Scholar 

  21. Y. Mori, M. Sasaki, C. Daian, Y. Sachiko, and M. Koko, Bull. Chem. Soc. Jpn., 65, 3358–3361 (1992).

    Article  Google Scholar 

  22. M. M. Kruk, D. V. Klenitsky, and W. Maes, Macroheterocycles, 12, 58–67 (2019).

    Article  Google Scholar 

  23. K. N. Solovʹev and E. A. Borisevich, Usp. Fiz. Nauk, 175, 247–270 (2005).

    Article  Google Scholar 

  24. J. A. Shelnutt, X.-Z. Song, J.-G. Ma, S.-L. Jia, W. Jentzen, and C. J. Medforth, Chem. Soc. Rev., 27, 31–41 (1998).

    Article  Google Scholar 

  25. B. Roder, M. Buchner, I. Ruckmann, and M. O. Senge, Photochem. Photobiol. Sci., 9, 1152–1158 (2010).

    Article  Google Scholar 

  26. C. J. Ziegler, J. R. Sabin, G. Richard Geier III, and V. N. Nemykin, Chem. Commun., 48, 4743–4745 (2012).

  27. W. J. D. Beenken, M. Presselt, T. H. Ngo, W. Dehaen, W. Maes, and M. M. Kruk, J. Phys. Chem. A, 118, 862–871 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kruk.

Additional information

V. N. Knyukshto is deceased.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 3, pp. 385–393, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyukshto, V.N., Gladkov, L.L., Maes, W. et al. Photoexcitation-Energy Deactivation in a Solution of 10-Phenyl-5,15-di-(4,6-Dichloropyrimidinyl)-Corrole at 77 K. J Appl Spectrosc 90, 507–514 (2023). https://doi.org/10.1007/s10812-023-01560-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01560-4

Keywords

Navigation