Skip to main content
Log in

Computational Simulation, Multi-Spectroscopic and Degradation Analysis of the Interaction Between Trametes versicolor Laccase and Bisphenol E

  • Published:
Journal of Applied Spectroscopy Aims and scope

Trametes versicolor laccase, one of the main enzymes used for the biodegradation of environmental pollutants, has received much attention in the degradation of phenolic pollutants. In this study, the binding energy between the Trametes versicolor laccase and bisphenol E (BPE) is first calculated by means of computational simulation. Moreover, the interaction between Trametes versicolor laccase and bisphenol E is studied with multi-spectroscopy. The results show that bisphenol E can be effectively degraded by crude Trametes versicolor laccase under optimal incubation conditions. The kinetic study is used to characterize the kinetic features of the laccase-catalytic degradation of BPE. The calculation results suggest that the reaction can proceed spontaneously. Spectral analyses show that the secondary structure of laccase is changed after the interaction between laccase and bisphenol E. The degradation efficiency of BPE is up to 93.64% after reacting for 6 h, and the maximum catalytic reaction rate is 0.1764 mg/(L·min). The reactions follow a first-order kinetic equation when the initial concentration of the substrate is lower than 5 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. W. Makene and E. J. Pool, Int. J. Environ. Res. Public. Health, 16 (2019).

  2. A. E. Hipwell, L. G. Kahn, P. Factor-Litvak, C. A. Porucznik, E. L. Siegel, R. N. Fichorova, R. F. Hamman, M. Klein-Fedyshin, and K. G. Harley, Human Rep. Update, 25, 51–71 (2019).

    Google Scholar 

  3. Q. Zhang, C. Ji, X. Yin, L. Yan, M. Lu, and M. Zhao, Environ. Poll., 210, 27–33 (2016).

    Article  Google Scholar 

  4. G. H. Wang and F. Wu, Environ. Chem., 25, 458–461 (2006).

    Article  ADS  Google Scholar 

  5. M. Y. Chen, M. Ike, and M. Fujita, Environ. Toxic., 17, 80–86 (2002).

    Article  ADS  Google Scholar 

  6. M. Xiao and J. Q. Xiao, Water Purif. Technol., 28, 21–24 (2009).

    Google Scholar 

  7. C. Y. Bao, Y. Wang, X. L. Xu, D. Li, J. Chen, Z. B. Guan, B. Y. Wang, M. Hong, J. Y. Zhang, T. H. Wang, and Q. Zhang, Bioresour. Technol., 342, Article ID 126026 (2021).

  8. R. C. Minussi, G. M. Pastore, and N. Duran, Bioresour. Technol., 98, 158–164 (2007).

    Article  Google Scholar 

  9. C. Z hang, L. Liu, G.-M. Zeng, D.-L. Huang, C. Lai, C. Huang, Z. Wei, N.-J. Li, P. Xu, M. Cheng, F.-L. Li, X.-X. He, M.-Y. Lai, and Y.-B. He, Biochem. Eng. J., 91, 149–156 (2014).

  10. G. Benfield, S. M. Bocks, K. Bromley, and B. R. Brown, Phytochemistry, 3, 79–88 (1964).

    Article  Google Scholar 

  11. J. A. Majeau, S. K. Brar, and R. D. Tyagi, Bioresour. Technol., 101, 2331–2350 (2010).

    Article  Google Scholar 

  12. A. C. Mot and R. Silaghi-Dumitrescu, Biochemistry (Mos.), 77, 1395–1407 (2012).

    Article  Google Scholar 

  13. L. Munk, A. K. Sitarz, D. C. Kalyani, J. D. Mikkelsen, and A. S. Meyer, Biotechnol. Adv., 33, 13–24 (2015).

    Article  Google Scholar 

  14. H. Catherine, M. Penninckx, and D. Frédéric, Environ. Technol. Innovat., 5, 250–266 (2016).

    Article  Google Scholar 

  15. G. Macellaro, C. Pezzella, P. Cicatiello, G. Sannia, and A. Piscitelli, Biomed. Res. Int., 614038 (2014).

  16. U. N. Dwivedi, P. Singh, V. P. Pandey, and A. Kumar, J. Mol. Catal. B Enzym., 68, 117–128 (2011).

    Article  Google Scholar 

  17. M. Asgher, A. Wahab, M. Bilal, and H. M. N. Iqbal, Waste Biomass Valorization, 9, 2071–2079 (2017).

    Article  Google Scholar 

  18. S. Beck, E. Berry, S. Duke, A. Milliken, H. Patterson, D. L. Prewett, T. C. Rae, V. Sridhar, N. Wendland, B. W. Gregory, and C. M. Johnson, Int. Biodeterior. Biodegradation, 127, 146–159 (2018).

    Article  Google Scholar 

  19. R. Bourbonnais and M. G. Paice, Appl. Microbiol. Biotech., 36, 823–827 (1992).

    Article  Google Scholar 

  20. D. Daâssi, A. Prieto, H. Zouari-Mechichi, M. J. Martínez, M. Nasri, and T. Mechichi, Int. Biodeterior. Biodegradation, 110, 181–188 (2016).

    Article  Google Scholar 

  21. M. Maryskova, I. Ardao, C. A. Garcia-Gonzalez, L. Martinova, J. Rotkova, and A. Sevcu, Enzyme Microbiol. Technol., 89, 31–38 (2016).

    Article  Google Scholar 

  22. L. Hongyan, Z. Zexiong, X. Shiwei, X. He, Z. Yinian, L. Haiyun, and Y. Zhongsheng, Chemosphere, 224, 743–750 (2019).

    Article  ADS  Google Scholar 

  23. K. Piontek, M. Antorini, and T. Choinowski, J. Biol. Chem., 277, 37663–37669 (2002).

    Article  Google Scholar 

  24. X. Hou, J. Du, J. Zhang, L. Du, H. Fang, and M. Li, J. Chem. Inf. Model., 53, 188–200 (2013).

    Article  Google Scholar 

  25. A. P. Norgan, P. K. Coffman, J. P. A. Kocher, D. J. Katzmann, and C. P. Sosa, J. Cheminformatics, 3, 12 (2011).

    Article  Google Scholar 

  26. M. A. Murcko, J. Med. Chem., 38, No. 26, 4953–4967 (1995).

    Article  Google Scholar 

  27. Y. M. Cao, L. Xu, and L. Y. Jia, N. Biotechnol., 29, 90–98 (2011).

    Article  Google Scholar 

  28. R. A. Laskowski and M. B. Swindells, J. Chem. Inf. Model., 51, 2778–2786 (2011).

    Article  Google Scholar 

  29. Y. Wei, Z. Yi, J. Xu, W. Yang, L. Yang, and H. Liu, J. Biomol. Struct. Dyn., 37, 1402–1413 (2019).

    Article  Google Scholar 

  30. J. Xu, Y. Wei, W. Yang, L. Yang, and Z. Yi, Analyst, 143, 4662–4673 (2018).

    Article  ADS  Google Scholar 

  31. D. Wu, D. Liu, Y. Zhang, Z. Zhang, and H. Li, Eur. J. Med. Chem., 146, 245–250 (2018).

    Article  Google Scholar 

  32. A. E. Illera, S. Beltran, and M. T. Sanz, Sci. Rep., 9, Article ID 13749 (2019).

  33. Y. M. Song, J. Wu, X. R. Zheng, and Q. Wu, Chin. J. Inorg. Chem., 22, 1615–1622 (2006).

    Google Scholar 

  34. Principles of Fluorescence Spectroscopy, R. L. Joseph (Ed.), Springer Science & Business Media (2013), pp. 529–569.

  35. I. P. Caruso, W. Vilegas, M. A. Fossey, and M. L. Cornelio, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 449–455 (2012).

    Article  ADS  Google Scholar 

  36. Z. A. Parray, F. Ahmad, M. I. Hassan, I. Hasan, and A. Islam, ACS Omega, 5, 13840–13850 (2020).

    Article  Google Scholar 

  37. B. Nian, C. Cao, and Y. Liu, J. Chem. Technol. Biotech., 95, 86–93 (2019).

    Article  Google Scholar 

  38. S. K. Pawar and S. Jaldappagari, J. Pharm. Anal., 9, 274–283 (2019).

    Article  Google Scholar 

  39. S. K. Pawar, R. Punith, R. S. Naik, and J. Seetharamappa, J. Biomol. Struct. Dyn., 35, 3205–3220 (2017).

    Article  Google Scholar 

  40. T. A. Wani, A. H. Bakheit, M. A. Abounassif, and S. Zargar, Front Chem., 6, 47 (2018).

    Article  ADS  Google Scholar 

  41. S. Li, J. H. Zhang, X. Y. Li, and J. Q. Fu, J. Beijing Institute Clothing Technol., 31, 68–72 (2011).

    Google Scholar 

  42. G. Konstantin, I. Aymelt, S. G. Roger, G. Klaus, and K. Carsten, Biophys. Comp. Biol., 110, 13380–13385 (2013).

    Google Scholar 

  43. Y. G. Shi, Q. Q. Guo, X. W. Yang, X. F. Liu, and S. J. Wang, J. Chin. Institute Food Sci. Tech., 18, 225–231 (2018).

    Google Scholar 

  44. H. Tang and D. Zhao, Bioorg. Chem., 88, Article ID 102981 (2019).

  45. Y. J. Kim and J. A. Nicell, Bioresour. Technol., 97, 1431–1442 (2006).

    Article  Google Scholar 

  46. I. Escalona, J. de Grooth, J. Font, and K. Nijmeijer, J. Membrane Sci., 468, 192–201 (2014).

    Article  Google Scholar 

  47. J. Margot, J. Maillard, L. Rossi, D. A. Barry, and C. Holliger, New Biotech., 30, 803–813 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Liu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, p. 350, March–April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Liu, H., Xu, M. et al. Computational Simulation, Multi-Spectroscopic and Degradation Analysis of the Interaction Between Trametes versicolor Laccase and Bisphenol E. J Appl Spectrosc 90, 466–475 (2023). https://doi.org/10.1007/s10812-023-01555-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01555-1

Keywords

Navigation