Skip to main content
Log in

Effect of Stacking 2D Lead Chloride Perovskites into Vertical Heterostructures on Photoluminescence Intensity

  • Published:
Journal of Applied Spectroscopy Aims and scope

Two-dimensional organic-inorganic hybrid lead halide perovskites are of interest for photovoltaic and light emitting devices due to their relative stability when compared to bulk lead halide perovskites and favorable properties that can be tuned. Tuning of the material can be performed by adjusting halide composition or by taking advantage of confinement effects. Here we use the density functional theory and excited state dynamics treated by the reduced density matrix method to examine the effects of the variation of the perovskite layer thickness on the ground-state and excited-state photo-physical properties of the materials; further we explore the effects of a vertical heterostructure of perovskite layers. Nonadiabatic couplings were computed based on the on-the-fly approach along a molecular dynamic trajectory at ambient temperatures. The density matrix-based equation of motion for electronic degrees of freedom is used to calculate the dynamics of electronic degrees of freedom. We found that the vertical stacking of two-dimensional perovskites into heterostructures shows an increase in photoluminescence intensity by two orders of magnitude when compared to the individual two-dimensional perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett., 15, No. 6, Article ID 3692 (2015), doi: https://doi.org/10.1021/nl5048779.

  2. B. R. Sutherland and E. H. Sargent, Nat. Photonics, 10, No. 5, 295 (2016), doi: https://doi.org/10.1038/nphoton.2016.62.

    Article  ADS  Google Scholar 

  3. X. Chen, H. Zhou, and H. Wang, Front. Chem., 9, Article ID 715157 (2021), doi: https://doi.org/10.3389/fchem.2021.715157.

  4. E.-B. Kim, M. S. Akhtar, H.-S. Shin, S. Ameen, and M. K. Nazeeruddin, J. Photochem. Photobiol., C 48, Article ID 100405 (2021), doi: https://doi.org/10.1016/j.jphotochemrev.2021.100405.

  5. C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun, L. Tang, J. Yang, W. Luo, C. Li, Y. Deng, S. Feng, J. Shen, S. Lu, C. Du, and H. Shi, Nanoscale, 8, No. 43, Article ID 18309 (2016), doi: https://doi.org/10.1039/C6NR04741F.

  6. F. Arabpour Roghabadi, M. Alidaei, S. M. Mousavi, T. Ashjari, A. S. Tehrani, V. Ahmadi, and S. M. Sadrameli, J. Mater. Chem. A, 7, No. 11, Article ID 5898 (2019), doi:https://doi.org/10.1039/C8TA10444A.

  7. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, No. 3, 982 (2014), doi:https://doi.org/10.1039/C3EE43822H.

    Article  Google Scholar 

  8. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, and S. G. Mhaisalkar, Adv. Mater., 28, No. 19, Article ID 3653 (2016), doi: https://doi.org/10.1002/adma.201506141.

  9. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol., 9, No. 9, 687 (2014), doi: https://doi.org/10.1038/nnano.2014.149.

    Article  ADS  Google Scholar 

  10. Y. Miao, L. Cheng, W. Zou, L. Gu, J. Zhang, Q. Guo, Q. Peng, M. Xu, Y. He, S. Zhang, Y. Cao, R. Li, N. Wang, W. Huang, and J. Wang, Light: Sci. Appl., 9, No. 1, 89 (2020), doi: https://doi.org/10.1038/s41377-020-0328-6.

  11. L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang, and M. Yuan, Light: Sci. Appl., 10, No. 1, 61 (2021), doi: https://doi.org/10.1038/s41377-021-00501-0.

  12. C. Zhao, D. Zhang, and C. Qin, CCS Chem., 2, No. 4, 859 (2020), doi: https://doi.org/10.31635/ccschem.020.202000216.

    Article  Google Scholar 

  13. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, and M. G. Kanatzidis, J. Am. Chem. Soc., 140, No. 10, 3775 (2018), doi: https://doi.org/10.1021/jacs.8b00542.

    Article  Google Scholar 

  14. M. Dion, M. Ganne, and M. Tournoux, Mater. Res. Bull., 16, No. 11, Article ID 1429 (1981), doi: https://doi.org/10.1016/0025-5408(81)90063-5.

  15. A. J. Jacobson, J. W. Johnson, and J. T. Lewandowski, Inorg. Chem., 24, No. 23, 3727 (1985), doi: https://doi.org/10.1021/ic00217a006.

    Article  Google Scholar 

  16. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, Chem. Mater., 28, No. 8, Article ID 2852 (2016), doi: https://doi.org/10.1021/acs.chemmater.6b00847.

  17. K. R. Kendall, C. Navas, J. K. Thomas, and H.-C. zur Loye, Chem. Mater., 8, No. 3, 642 (1996), doi: https://doi.org/10.1021/cm9503083.

  18. C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A. D. Mohite, J. Even, T. J. Marks, and M. G. Kanatzidis, J. Am. Chem. Soc., 139, No. 45, Article ID 16297 (2017), doi: https://doi.org/10.1021/jacs.7b09096.

  19. K. Wang, J. Y. Park, Akriti, and L. Dou, EcoMat, 3, No. 3, Article ID e12104 (2021), doi: https://doi.org/10.1002/eom2.12104.

  20. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, Nat. Commun., 9, No. 1, Article ID 2254 (2018), doi: https://doi.org/10.1038/s41467-018-04659-x.

  21. L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, J. Am. Chem. Soc., 138, No. 8, Article ID 2649 (2016), doi: https://doi.org/10.1021/jacs.5b11740.

  22. C. P. Clark, J. E. Mann, J. S. Bangsund, W.-J. Hsu, E. S. Aydil, and R. J. Holmes, ACS Energy Lett., 5, No. 11, Article ID 3443 (2020), doi: https://doi.org/10.1021/acsenergylett.0c01609.

  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, No. 7, Article ID 1396 (1997), doi: https://doi.org/10.1103/PhysRevLett.78.1396.

  24. G. Kresse and D. Joubert, Phys. Rev. B, 59, No. 3, Article ID 1758 (1999), doi: https://doi.org/10.1103/PhysRevB.59.1758.

  25. P. E. Blöchl, Phys. Rev. B, 50, No. 24, Article ID 17953 (1994), doi: https://doi.org/10.1103/PhysRevB.50.17953.

  26. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, No. 1, 15 (1996), doi: https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  Google Scholar 

  27. J. Kubler, K. H. Hock, J. Sticht, and A. R. Williams, J. Phys. F: Met. Phys., 18, No. 3, 469 (1988), doi: https://doi.org/10.1088/0305-4608/18/3/018.

    Article  ADS  Google Scholar 

  28. U. V. Barth and L. Hedin, J. Phys. C: Solid State Phys., 5, No. 13, Article ID 1629 (1972), doi: https://doi.org/10.1088/0022-3719/5/13/012.

  29. A. G. Redfield, IBM J. Res. Dev. 1, No. 1, 19 (1957), doi: https://doi.org/10.1147/rd.11.0019.

    Article  Google Scholar 

  30. J. M. Jean, R. A. Friesner, and G. R. Fleming, J. Chem. Phys., 96, No. 8, 5827 (1992), doi: https://doi.org/10.1063/1.462858.

    Article  ADS  Google Scholar 

  31. A. Einstein, Phys. Z., 18, 121 (1917).

    Google Scholar 

  32. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950), doi: https://doi.org/10.1039/DF9500900014.

    Article  Google Scholar 

  33. Y. Fu, W. Zheng, X. Wang, M. P. Hautzinger, D. Pan, L. Dang, J. C. Wright, A. Pan, and S. Jin, J. Am. Chem. Soc., 140, No. 46, Article ID 15675 (2018), doi: https://doi.org/10.1021/jacs.8b07843.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kilin.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, p. 348, March–April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graupner, D.R., Kilin, D.S. Effect of Stacking 2D Lead Chloride Perovskites into Vertical Heterostructures on Photoluminescence Intensity. J Appl Spectrosc 90, 436–447 (2023). https://doi.org/10.1007/s10812-023-01551-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01551-5

Keywords

Navigation