Skip to main content
Log in

Achromatic Switchable Liquid-Crystal Twist-q-Plate

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new electrically controlled photonic liquid crystal device in the form of a twist-q-plate for the generation of a given number of polarization and phase optical singularities on the wavefront of a light beam in a wide spectral range is proposed. The ability of the element to function in two modes was demonstrated experimentally: generation of a given number of singularities or generation of a Gaussian beam and application of this element in a scheme of optical tweezers. A theoretical model was developed to determine the range of controlling voltages for achromatic functioning of the proposed element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruchi Rajput, Senthilkumaran, and Sushanta Kumar Pal, Int. J. Opt., 1–33 (2020).

  2. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Light Sci. Appl., 90, No. 8, 1–29 (2019).

    Google Scholar 

  3. V. G. Niziev and A. V. Nesterov. J. Phys. D: Appl. Phys., 32, No. 13, 1455–1461 (1999).

    Article  ADS  Google Scholar 

  4. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, Meas. Sci. Technol., 18, 1673–1677 (2007).

    Article  ADS  Google Scholar 

  5. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science, 296, 1101–1103 (2002).

    Article  ADS  Google Scholar 

  6. G. M. Lerman and U. Levy, Opt. Express, 17, 23234–23246 (2009).

    Article  ADS  Google Scholar 

  7. Y. S. Chang, P. Y. Chien, and M. W. Chang, Appl. Opt., 36, 258–265 (1997).

    Article  ADS  Google Scholar 

  8. L. Fang, M. J. Padgett, and J. Wang, Laser Photon Rev., 11, No. 6, 1700183(1–8) (2017).

  9. X. Yin, X. Chen, H. Chang, X. Cui, Y. Su, Y. Guo, Y. Wang, and X. Xin, IEEE Access, 7 (2019) 184235–184241.

    Article  Google Scholar 

  10. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett., 91, Article ID 233901 (2003).

  11. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics, 2, 501–505 (2008).

    Article  Google Scholar 

  12. Jian Wang and Yize Liang, Front. Phys., 9, Article ID 688284(1–16) (2021).

  13. A. Forbes, A. Dudley, and M. McLaren, Adv. Opt. Photon., No. 2, 200–227 (2016).

  14. Graham Gibson, Johannes Courtial, Miles J. Padgett, Mikhail Vasnetsov, Valeriy Pas’ko, Stephen M. Barnett, and Sonja Franke-Arnold, Opt. Express, No. 22, 5448–5456 (2004).

  15. A. Yu. Kostylev, I. V. Ll′ina, T. Yu. Cherezova, and A. V. Kudryashov, Opt. Atm. Okeana, 20, No. 11, 1028–1032 (2007).

    Google Scholar 

  16. A. S. Ostrovsky, C. Rickenstorff -Parrao, and V. Arrizon, Opt. Lett., 38, No. 4, 534–536 (2013).

  17. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, JETP Lett., 52, 429–431 (1990).

    Google Scholar 

  18. V. P. Aksenov, V. Yu. Venediktov, A. A. Sevryugin, and I. M. Yursunov, Opt. Spektrosk., 124, B2 275–279 (2018).

    ADS  Google Scholar 

  19. E. Melnikova, D. Gorbach, I. Rushnova, V. Kabanova, S. Slusarenko, A. Tolstik, C. Losmanschii, A. Meshalkin, and E. Achimova, Nonlinear Phenom. Complex Syst., No. 1, 104–111 (2021).

  20. Yue Chen, Zhao-Xiang Fang, Yu-Xuan Ren, Lei Gong, and Rong-De Lu, Appl. Opt., No. 27, 8030–8035 (2015).

  21. Mohammad Mirhosseini, Omar S. Magana-Loaiza, Changchen Chen, Brandon Rodenburg, Mehul Malik, and Robert W. Boyd, Opt. Express, No. 25, 30204–30210 (2013).

  22. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, Opt. Express, No. 15, 3548–3553 (2004).

  23. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W’t Hooft, Appl. Opt., No. 3, 688–694 (2004).

  24. M. Massari, G. Ruff ato, M. Gintoli, F. Ricci, and F. Romanato, Appl. Opt., No. 13, 4077–4083 (2015).

  25. L Marrucci, Mol. Cryst. Liq. Cryst., 561, 48–56 (2012).

    Article  Google Scholar 

  26. L. Marrucci, J. Nanophoton., 7, No. 1, Article ID 078598 (2013).

  27. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, Mol. Cryst. Liq. Cryst., 561, 48–56 (2012).

    Article  Google Scholar 

  28. Y.-H. Huang, S.-W. Ko, M.-S. Li, S.-C. Chu, and A. Y.-G. Fuh, Opt. Express, 21,10954–10961 (2013).

    Article  ADS  Google Scholar 

  29. M. Stalde and M. Schadt, Opt. Lett., 21, Article ID 1948 (1996).

  30. https://www.arcoptix.com/Polarization_products.htm.

  31. E. A. Mel’nikova, Opt. Zh., 89, No. 3, 68–78 (2022).

  32. I. Rushnova, An. Murauski, V. Mikulich, and Al. Muravsky, 23th Int. Display Workshops (IDW/AD), 69–72 (2016).

  33. A. A. Muravsky, A. A. Murauski, and I. N. Kukhta, Appl. Opt., 59, No. 17, 5102–5107 (2020).

    Article  ADS  Google Scholar 

  34. A. A. Muravsky, A. A. Murauski, I. N. Kukhta, and A. S. Yakovleva, J. Soc. Inf. Displ., 29, No. 11, 833–839 (2021).

    Article  Google Scholar 

  35. V. S. Mikulich, An. A. Murauski, Al. A. Muravsky, and V. E. Agabekov, Appl. Spectrosc., 83, No. 1, 115–120 (2016).

  36. E. Melnikova, D. Gorbach, S. Sr. Slussarenko, A. Muravsky, A. Tolstik, and S. Slussarenko Jr., Opt. Commun., 522, Article ID 128661 (2022).

  37. C. V. Mauguin, Bull. Soc. Fr. Miner., 34, 71–117 (1911).

    Google Scholar 

  38. Q. Wang, C. Tu, Y.-N. Li, and H.-T. Wang, APL Photonics, 6, Article ID 040901 (1–19) (2021).

  39. H. He, M. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett., 826–829 (1995).

  40. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, Opt. Lett., 22, 52–54 (1997).

    Article  ADS  Google Scholar 

  41. Graham D. Bruce, Paloma Rodríguez-Sevilla, and Kishan Dholakia, Adv. Phys.: X, 6, No. 1, Article ID 1838322 (2021).

  42. A. A. Murauski, S. A. Serdechnaya, and H. S. Kwok, SID Symp. Dig. Tech. Pap., 38, No. 1, P-132, 702–705 (2007).

  43. V. Yu. Stanevich and A. A. Muravskii, Zh. Bel. Gos. Univ. Fizika, No. 3, 10–25 (2022).

  44. E. Hecht, Optics, 4th edn., San Francisco, Addison-Wesley VI (2002), 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Melnikova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 338–347, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-338-347

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, E.A., Tolstik, A.L., Gorbach, D.V. et al. Achromatic Switchable Liquid-Crystal Twist-q-Plate. J Appl Spectrosc 90, 427–435 (2023). https://doi.org/10.1007/s10812-023-01550-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01550-6

Keywords

Navigation