Skip to main content
Log in

Polarization Selectivity of a Double DNA-Like Helix as an Element of Metamaterials and Metasurfaces

  • Published:
Journal of Applied Spectroscopy Aims and scope
  • 1 Altmetric

The polarization selectivity of a double DNA-like helix with respect to waves with left and right circular polarization at a resonance characteristic of the periodic structure is confirmed by modeling. As an example, helices of various lengths consisting of two and a half and twenty and a half turns are considered while the wavelength of the incident field is approximately equal to the length of the helix turn. The effect consists of a fundamentally different ability of a double DNA-like helix to reflect waves with right or left circular polarization at the resonance under consideration. The strongest reflected wave has that circular polarization direction for which the electric vector is twisted in space in the opposite direction relative to the double helix. An electromagnetic wave polarizer based on a double DNA-like helix that converts an incident linearly polarized wave into a reflected wave with circular polarization can be created. The electromagnetic interaction forces between the helix strands for incident waves with three states of polarization are calculated. The results confirm the polarization selectivity of a double DNA-like helix as an element of metamaterials and as an object with great potential for use in optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, Nanophotonics, 7, No. 6, 1069–1094 (2018); doi: https://doi.org/10.1515/nanoph-2017-0132.

  2. V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Raʹdi, and S. A. Tretyakov, Phys. Rev. B, 94, Article ID 075142 (2018).

  3. B. I. Stepanov and A. A. Bogush (Eds.), Problems of Current Optics and Spectroscopy [in Russian], Nauka i Tekhnika, Minsk (1980), pp. 173–186.

    Google Scholar 

  4. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, J. Appl. Phys., 117, Article ID 044501 (2015); doi: https://doi.org/10.1063/1.4906220.

  5. C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, Phys. Rev. Lett., 107, 177401 (2011); doi: https://doi.org/10.1103/PhysRevLett.107.177401.

  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science, 325, No. 5947, 1513–1515 (2009); doi: https://doi.org/10.1126/science.1177031.

    Article  ADS  Google Scholar 

  7. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, Adv. Opt. Mater., 3, No. 10, 1411–1417 (2015); doi: https://doi.org/10.1002/adom.201500194.

  8. S. J. Li, Y. B. Li, H. Li, Z. X. Wang, C. Zhang, Z. X. Guo, R. Q. Li, X. Y. Cao, Q. Cheng, and T. J. Cui, Ann. Phys., 532, No. 5, Article ID 2000020 (2020); doi: https://doi.org/10.1002/andp.202000020.

  9. Z. Y. Li, S. J. Li, B. W. Han, G. S. Huang, Z. X. Guo, and X. Y. Cao, Adv. Theory Simul., 4, No. 8, Article ID 2100117 (2021); doi: https://doi.org/10.1002/adts.202100117.

  10. B. Han, S. Li, Z. Li, G. Huang, J. Tian, and X. Cao, Opt. Express, 29, No. 13, 19643–19654 (2021); doi: https://doi.org/10.1364/OE.425787.

    Article  ADS  Google Scholar 

  11. J. D. Watson and F. H. C. Crick, Nature, 171, 737–738 (1953); doi: https://doi.org/10.1038/171737a0.

  12. J. D. Watson, T. A. Baker, S. P. Bell, A. A. F. Gann, M. Levine, and R. M. Losick, Molecular Biology of the Gene, Pearson, London, UK (2013), pp. 77–105.

  13. I. V. Semchenko, S. A. Khakhomov, and A. P. Balmakov, Radiotekh. Élektron. (Moscow, Russ. Fed.), 52, No. 9, 996–1001 (2007).

  14. I. V. Semchenko, S. A. Khakhomov, and A. P. Balmakov, Biofizika, 55, No. 2, 227–232 (2010).

    Google Scholar 

  15. I. V. Semchenko, S. A. Khakhomov, and A. P. Balmakov, Kristallografiya, 55, No. 6, 979–984 (2010).

    Google Scholar 

  16. I. V. Semchenko, S. A. Khakhomov, and A. P. Balmakov, Telecommun. Radio Eng., 70, No. 20, 1871–1882 (2011); doi: https://doi.org/10.1615/TelecomRadEng.v70.i20.70.

    Article  Google Scholar 

  17. S. A. Khakhomov, I. V. Semchenko, A. P. Balmakou, and M. Nagatsu, Proceedings of the 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics — Metamaterials-2012, St. Petersburg (2012), pp. 309–311.

  18. I. V. Semchenko and S. A. Khakhomov, Electromagnetic Waves in Metamaterials and Helical Structures [in Russian], Belaruskaya Navuka, Minsk (2019), pp. 219–245.

  19. M. Kerker, D. S. Wang, and C. L. Giles, J. Opt. Soc. Am., 73, 765–767 (1983).

    Article  ADS  Google Scholar 

  20. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials. Theory and Applications: Electrocomponent Science Monographs, Gordon and Breach Science Publishers, Amsterdam (2001), pp. 245–249.

  21. I. V. Semchenko, I. S. Mikhalka, S. A. Khakhomov, A. L. Samofalov, and A. P. Balmakou, Front. Nanotechnol., 4, 794213 (2022); doi: 0.3389/fnano.2022.794213.

  22. I. V. Semchenko, I. S. Mikhalka, I. A. Faniayeu, S. A. Khakhomov, A. P. Balmakou, and S. A. Tretyakov, Photonics, 7, No. 4, 83 (2020); doi: https://doi.org/10.3390/photonics7040083.

    Article  Google Scholar 

  23. I. V. Semchenko, S. A. Khakhomov, V. S. Asadchii, E. V. Naumova, V. Ya. Prinz, S. V. Golod, A. G. Milekhin, A. M. Goncharenko, and G. V. Sinitsyn, Kristallografiya, 59, No. 4, 544–550 (2014).

    Google Scholar 

  24. I. V. Semchenko, S. A. Khakhomov, V. S. Asadchy, S. V. Golod, E. V. Naumova, V. Y. Prinz, A. M. Goncharenko, G. V. Sinitsyn, A.V. Lyakhnovich, and V. L. Malevich, J. Appl. Phys., 121, No. 1, Article ID 015108 (2017).

  25. N. C. Seeman, Ann. Rev. Biochem., 79, 65–87 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Semchenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 329–337, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-329-337

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semchenko, I.V., Khakhomov, S.A., Mikhalka, I.S. et al. Polarization Selectivity of a Double DNA-Like Helix as an Element of Metamaterials and Metasurfaces. J Appl Spectrosc 90, 419–426 (2023). https://doi.org/10.1007/s10812-023-01549-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01549-z

Keywords

Navigation